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Abstract

When different mathematical models are used for software analysis and development it is
important to understand their relationships. When the models are truly mathematical, and
when the aspects of redity that they seek to model are common, it may be possible to ex-
press their relationships in precise mathematical terms. This paper studies three mathemat-
ical models: The sketch datamodel, the relational data model, and the data specifications of
Piessens and Steegmans, and determines their relationships mathematically and in detail.
The constructions presented here answer reasonably long-standing theoretical questions,
and offer techniques that promise to be practically useful in integrating data models.
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1 Introduction

This paper is one in a series of papers in which category theoretic methods are
used to develop and apply new data models for information system specification,
development and research. By way of example, recent results in this work have
included a new treatment of the view update problem [10], [17]. The new approach
has been applied inter alia to database interoperation [18], to the development of
enterprise information systems [5], and to software maintenance [18]. In addition,
with our colleague Dampney, the techniques have been tested in industry [3], [8],
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[4]. The category theoretic data model that we use has come to be known as the
sketch data model.

As the sketch data model has been applied more widely, and particularly with
the development of new approaches to problems like the view update problem,
practitioners and theoreticians who work with other data models have increasingly
been seeking away of trandating between sketch data models and other data mod-
els. Trandations would allow the sketch data model to be used as one part of a
development process involving other data models, and would allow problems (in-
cluding the view update problem) expressed in other data models to be brought
into the framework developed with the sketch data model. Potentially, sketch data
model techniques and results might be translated into other models more familiar
to practitioners.

The problem addressed by this paper is to make precise the relationship be-
tween the sketch data model and other data models. Thisis essentialy a theoreti-
cal problem requiring the determination of the mathematical relationships between
mathematical models, but it also has important practical applications. At present
industrial problems are cast into the sketch data model and analysed there, often
without reference to detailed models in other frameworks. A precise connection
between for example the relational datamodel and the sketch data model will allow
extant relational models to be trandlated saving considerable devel opment time.

The paper isorganised asfollows. In Section2 we define categories of relational
database schema, and of sketch data model schema, and give constructions which
(functorially) convert arelational scheme into a sketch scheme and vice versa. We
certainly do not expect the constructions to be inverse, or even adjoint, but we do
give comparison maps between each of the composites of the two of them and the
respective identities. This gives a precise relationship between the schema of the
two data models, but we al so need to expl ore the rel ationship between their models,
so in Section 3 we develop an equivalence of categories of certain models (states).
Much of the theory of relational databases has been based around normalisation,
and in Section 4 we show that the relational states corresponding to sketch data
models (instances of sketch data model schema) are in at least third normal form
and indicate how a danger to do with transitive dependencies is avoided. This
completes our study of relational and sketch data models, and should permit us
to relate sketch data models to many others since the relational data model is so
ubiquitous.

Having thus dealt with the main question of the paper, the relationship between
sketch data models and relational data models, and through them other disparate
data models, we move on to consider the relationship between the sketch data
model and another model which uses sketches: the data specifications of Piessens
and Steegmans. In Section 5 we make explicit the relationship between sketch data
models and data specifications, and most importantly note that there is not in gen-
eral an equivalence of model categories for corresponding specifications. We aso
indicate why the equivalence fails, and we do still obtain a close relationship —
an equivalence of one model category with a full subcategory of the other. This
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answers another long standing question, that of the precise relationship between
these two closely related but heterol ogous data models.

Finally Section § briefly reviews related work, and Section i/, makes some clos-
ing remarks.

2 Relational schemesand EA sketches

A definition of arelational database scheme includes several components (see, for
example, [11]). Herewe abstract the main itemsand describe a category of database
schemes.

Definition 2.1 A (relational) database schemeisatripleS = (D,R ,F ) where
(i) D = (Ag)dep isafinite family of finite sets— the domains of S
(i) R = (1 2+ ¢ %+ D), risafinitefamily of primary key - relation schemes;
the elements of the set C; are the column headings for the table (relation) r.
(iii) F = {((st,ts,ki))fer isafinite family of foreign key definitions

where G; isfinite for al r € R sf,t; € R, and for all (s;t,k) € F, 1 -~ Cs and
cs(k) = ().

Note that we require aprimary key to be a single column heading. The equation
at the end of the definition smply requiresthat the domains of the source and target
of aforeign key definition be the same.

Definition 2.2 A morphism of database schemes G : S — S’ is specified by map-
pings GP : D—D’, GR : R—R, GF : F—F’ and a family of mappings
(G(r) : Cr —Cl)rer with r’ = GR (1) satisfying
(i) AGp(d) = A4 (compatibility of domains)
(i) GPc, = ¢.,/G(r) and py = G(r)pr (compatibility of headings and primary
keys)
(iii) denoting GF (s,t,k) = (3,t",K), s = GR (s),t’ = GR (t) and K = G(s)k (com-
patibility for foreign keys)
In the sequel, when the component of G is obvious, we will omit the super-

script. Evidently, morphismsof database schemesform acategory which we denote
DbSch.

A sketch [2] isaquadruple consisting of agraph, aset of diagramsin the graph,
a set of cones in the graph, and a set of cocones in the graph. Let I denote the
function taking each cone to its base, and let = denote the function taking each
cocone to its base. We recall from [19] the definition of EA sketch.

Definition 2.3 An EA sketch E = (G, D, L, R) isasketch for which
(i) every mtin L has M (m) finite;
(i) every oinRhas Z(0) finite and discrete;
(iii) thereisan object 1in G and the cone with empty base and vertex 1isinL.
3
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If Aisthe vertex of acoconein R, and the objects in the base of that cocone are
al 1, then Alis called an attribute. A node of G which is neither an attribute nor
liscalled an entity. An EA sketch is keyed if, for each entity E in G, thereisa
specified monomorphism ke : E—— Ag, where Ag is an attribute.

All of our EA sketches are henceforth assumed to be keyed and we denote the
category of keyed EA sketches and sketch morphisms (that also preserve keys)
by EASk. We wish to compare DbSch and EASk, and eventually their model
categories.

We begin by noting that it is straightforward to define a functor Sfrom DbSch
to EASk.

Construction 1: Let S = (D,R ,F ) be a database scheme. The sketch S(S) has
the following components:

The underlying graph of SS) has:

(n1) anode denoted Ay for eachd € D

(n2) anode denoted C; for eachr € R

(n3) anode denoted 1

and

(el) an edge from 1 to A4 for each element of the set Ay
(e2) an edge from C; to A, () for eachx € G

(e3) an edge from Cs to C; for each (s;t, f) € F.

TheconesL of S(S) are:
(c1) the empty cone with vertex 1
(c2) amonic specification for the edge from C; to A, p,

The discrete cocones R of S(S) are exactly those making the Aq into sums of their
elements.

There are no commutative diagrams D, and the key for each entity is provided
by (c2).

This completes the construction of §(S). O

It isimportant to notice that we did not add a node to represent the product of
the domains determined by c,. The monic specification arising from the primary
key for each relation scheme will guarantee that in models of the sketch S(S) the
value at any entity isarelation on its attributes.

Proposition 2.4 The definition of (S) extends to morphisms of DbSch yielding a
functor S: DbSch — EASK. O

In the other direction and of moreinterest for our purposes, we obtain adatabase
scheme by ignoring most of the constraint data for an EA sketch.

Construction 2: Let E = (G, D, L,R) be akeyed EA sketch. The database scheme
T(E) has the following data:
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The family of domains D isindexed by the set D of attribute nodes of G. The do-
main sets Ay are specified up to isomorphism by the cocones defining the attributes.

The family of relation schemes Ry is indexed by the set R of entities. For each
r € R, the set C; isthe set of edgesin G from the noder, except those edges which
are one path of acommutativediagram fromr (the exceptionisdiscussed in Section
4). The mapping ¢, names the attribute nodes with edges from r, and the primary
key attribute of the target for the edges to entities. The primary key is the selected
monic specification.

The family of foreign keys Fg isindexed by the set F of edgesin G among entities
(with the exception noted in the previous paragraph). For each f € F, sf and t; are
the source and target of the edge, and k¢ is the element of Cs, associated with the
edge.

This completes the construction of T (E). O
Proposition 2.5 The definition of T (E) extends to morphisms of EASK yielding a
functor T : EASk — DbSch. O

We cannot expect adjunction between Sand T, but their composites are related
to the identity functors.
First, note that we can easily define a comparison morphism

bs 1 TSS)—3S

in DbSch. Both T and S preserve attribute data, so the domain information for
TS(S) isexactly that of S. Construction 1 definesan entity of S(S) for each relation
scheme of S, and Construction 2 defines a relation scheme for each entity of G.
Thus, the set of relation schemes for TS(S) is the same as that for S. Primary
keys are preserved. However, Construction 2 introduces a new column head in C,
whenever there is aforeign key from arelation scheme. The morphism ¢s should
identify new headings which so result. Finally, the foreign keys of TS(S) arise
exactly from those of S. Note that because there are no commutative diagrams in
S(S), the exception to edges giving foreign keys in Construction 2 does not apply
t0 S(S).

On the other hand, we have a comparison morphism of EA sketches

As just noted, the attribute and primary key data is preserved by both construc-
tions. Indeed, by Constructions 1 and 2 the underlying graph of ST (E) has exactly
the same nodes G. It has an edge for each edge of G except those to which the
exception in Construction 2 applies. ST(E) has none of the commutative diagrams
of E. Itsfinite limit constraints arise only from monic specifications appearing as
keysin E, and its cocones are exactly those defining attributes.

5
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3 Modds

Our interest in this paper is solely in models with values in the category of finite
sets setp. We denote the category of setg models of an EA sketch by Mod(EE) and
in this article do not call them database states in order to distinguish them from
objects of St(S) as defined below. Recall from [19] that for a keyed EA sketch E,
Mod(E) isapreorder and al components of a morphism of models are monic.

For a database scheme S = (D, R ,F ) we need to define the category of states
of S, which we will denote St(S). It too will be a preorder.

Definition 3.1 A state of S is a family D = (Dy)cr Of relations indexed by R
satisfying, forr € Rand f = (s,t,k) € F:

(s1) Dy hassignature Gy, i. . Dy isasubset of Myec, A, ()

(s2) (primary key integrity) py isakey, i. e. the following composite is monic:

Dr(—> I_I XECr ACr (X) T[_) ACr Pr

(s3) (foreign key integrity) the projection D} of Ds on Ay = Ay, isincluded in the
projection of D¢ on Ay, as below (where DK and Df* are images of the composite of
the other two mappingsin their square)

Dr

MiccAcy(i) —Acs(k) — Aapt MjecAa(j)

Definition 3.2 A morphism of statessD ™ D’ of S isafamily (D; 2~ D!)cRr
of functions which commute with the inclusionsof D, and Dy in M, A;.

Note that the m, are necessarily monic. The states and morphisms of S deter-
mine the category St(S). Given a model M of an EA sketch E with non-attribute
entities (E;)cR, it is clear how to view the family (M(E;))rcr as a family of re-
lations that is a state of T(EE). Similarly, morphisms of models of E determine
morphismsin St(T(EE)), and we obtain:

Proposition 3.3 If E isan EA sketch, there isa fully faithful functor
C :Mod(E) — St(T(E))

Indeed, since E iskeyed, any morphism of statesfrom C (M) toC (N), say arises
from amorphism of models. Thereis also afunctor

Yg : Mod(E) — Mod(ST(E))
induced by the sketch morphism Wy : ST (E) — E noted in the previous section.
Proposition 3.4 Thereis an equivalence of categories
J :S{(T(E))— Mod(ST (E))
6
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satisfying Y, = JC.

Proof. Asnoted at the end of Section 2, ST (E) has the attribute and primary key
data of the database scheme T (E). To define J, note that a family of relations
whichisastate D of T(E) allows taking the domains of the relations as values of a
model Mp of ST (E) at the entities. Foreign key satisfaction defines the model Mp
on edges of the sketch ST (E), and there are no commuitativities or additional limit
constraintsto check. Inthe other direction, for amodel M of ST (E), theset M(E) at
an entity E iscertainly arelation on the domains of therelation schemeCg in T (E)
because of the key constraint. Moreover, amodel will satisfy all of the foreign key
constraints of T (E) Thuswe get a database state Dy in St(T (E)). On both sides of
the equivalence, homomorphisms are defined by compatible families of monos and
the categories are preorders. We leave verification that the constructions outlined
are essentially mutually inverse to the reader. O

4 Normalisation

In principle the database scheme arising from akeyed EA sketch should be closeto
being normalised. Recall that functional dependencies are specified from one set of
attributes to another. The edges between nodes in the underlying graph of a sketch
express functional dependency between their key attributes. We have sometimes
insisted that attributes not be the domains of arrows. In that case the EA sketch
does not express any functional dependency except:

(i) those from the key attribute of the source of an edge to the key attribute of its
target

(ii) the dependency of anon key attribute on a primary key.

Thus, if there are other functional dependencies an EA sketch cannot express them.
This appears to be a weakness of the model since we cannot expect the absence
of such functional dependencies. However, if we assume that all functional depen-
dencies are expressed by the EA sketch EE, then the relation schemes of T (E) will
bein 3NF (indeed BCNF if there are no monic constraints from entities other than
specified keys).

The reason for the exception in Construction 2 is to avoid having a transitive
functional dependency arise in T(E). When there is a commuting diagram con-
sisting of a single edge and another commuting path from an entity E; atransitive
dependency arises. For example suppose the following commutesin E

.

E,—E3

Here, if A and A4 are the key attributes of E, and E4, we have that Ay — A4 isa
derived dependency which would be transitive had we added the single edge from
E1to E4 t0C,.
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The above situation appears to be the only one causing potential problems. Note
that if there are two (or more) edges from E; to a second entity Ep, they ssimply
create two attributes and two foreign keys, e. g.

mother
CHILDREN PARENTS
father

Moreover, if two paths from E; with the same target both have length greater than
one, the problem does not arise. Indeed, the target entity does not contribute an
attribute to Cg,

The considerations above justify:

Proposition 4.1 With the dependencies implied by an EA sketch E, the database
scheme T (E) is3NF.

5 EA sketchesand data specifications

In their articles [21,22], Piessens and Steegmans have proposed the notion of data
specification for semantic data modelling. Here we relate models for this view of
data modelling with our EA sketch data models. We modify Piessens' definition to
require that attributes have finite values since we are unconvinced by his arguments
for so-called ‘ meta-finite’ structuresin Computer Science.

Definition 5.1 A data specification (S,A) consists of
(i) afinitesketchS = (G,D,L,C)
(if) foreach T inV, the nodes of G, afinite set Ar, called the set of attributes of

entity type T, and for each a € At an attribute set St (a), and we denote these
collectively by A(T) = Maca; Sr(a).

So A can beviewed asafunctor A : V — set (V the discrete category), which
isused in the following definitions. Denote the obviousinclusions| :V — G (V
the discrete graph) and J : setg — set.

Definition 5.2 A model of a data specification (S,A) isa couple (M,\) where M
isamodel of S insetg and A : IMI — A isanatural transformation.

Definition 5.3 A homomorphism from a data specification model (M, ) to adata
specification model (M’,\") isanatural transformation ¢ : M — M’ satisfying the
equation A ol@] = A.

In order to compare EA sketches and data specifications we first note that the
latter permit non-discrete cocones. We do not include such coconesin EA sketches
since they would, for example, permit constraints requiring identification of values
of base entities.

Proposition 5.4 Let (S,A) be a data specification whose cocones C are discrete.
Then there is an EA sketch E such that Mod(E) is equivalent to the category of
models of (S,A).
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Proof. Let (S,A) be a data specification as in the statement. First augment its
sketch by adding an attribute cocone for each attribute set Sy (@) in the specification
and an arrow from T to the vertex of the cocone. The resulting sketch E(s a) is
clearly an EA sketch.

Now any model M of Es a) clearly defines a model of the data specification
(S,A): restrict M to S and define A using the M components of the arrowsto St (a)
attributes. Any morphism of states defines a homomorphism of models. Moreover,
any model (M,A) of (S,A) is the image under the correspondence just defined
of astate of Es a). The state has the values of M on S and A serves to define the
required arrows from M(T) to the (vertices of cocones constructed from the) Sr(a).
Thus we have defined a functor from Mod(Es a)) to models of (S,A) which is
surjective on objects. To complete the demonstration of the claimed equivalence
requires only noting that the correspondence is fully faithful. O

A dlightly subtle point we should make explicit above is that the At defined
from a state are more precisely (but ignoring Piessens’ | and J)

M(T) —NM(Sr(a)) = A(T)

and in saying that we have a functor we are assuming that the isos are chosen
coherently. Note that we obtain an equivalence rather than an isomorphism here.

Proposition 5.5 Let E be an EA sketch such that

(i) no attribute is the codomain of a commutative diagram
(if) no attributeisin the base of a cone.

There is data specification (Sg,Ar) whose category of models is isomorphic to
Mod(E).

Proof. Let E be an ER sketch as in the statement. Modify E to Si by removing
attributes, their defining cocones and any arrows to them. Call the resulting sketch
Sg. Then, for each of the remaining entities T, and each arrow a from T to an
attribute in E, add a to At and define Sr(a) to be a set with as many elements as
the attribute at the codomain of a. Thisdefines (Sg, Ag).

Now a model M for E in setg has finite values and satisfies the constraints
of Sk, so that it restricts to a unique model Mg of Sg in setg. The values of M
on attributes are determined to within isomorphism and consistent with A, so
the M(a) : M(T) — Sr(a) for a € At combine to define At : Mg(T) —A(T).
There are no naturality conditions to check, so My and the A’s determine a unique
model of (Sg,Ag). Moreover any homomorphism of models of E determines a
unique homomorphism of models of (Sg,Ag). Conversely, any model (M,\) of
(Sg,Ag) can be extended to amodel M’ in Mod(E) since the assumptions (i) and
(ii) guarantee that the At can be used to define M’ on the arrows deleted from EE in
the passage to the data specification and a homomorphism M1 — M, of models
can be extended to a unique morphism of models of E. O

The need for conditions (i) and (ii) results from what we see as a gap in the
notion of data specification. Supposethat E; and E, are entitiesand A isan attribute

9
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of E. A very natural commuitativity for E to include is atriangle:

f E2
;\/
A

A data specification model can impose thisrequirement only by ignoring af. Worse
still, if Aisthe codomain of a commutative square or pullback, say, with attributes
at its corners, there is simply no way to allow A to be an attribute of the corners
in a data specification and enforce the constraints. Thus we can only obtain the
following by weakening these conditions and using the construction above.

Proposition 5.6 Let E be an EA sketch. There is a data specification (Sg,Ag)
whose category of models has a full subcategory isomorphic to Mod(E).

E1

6 Related Research

In the last decade there has been considerable growth in the use of category theory
to support semantic data modelling. Piessens and Steegmans used data specifi-
cations as described above to obtain results on the algorithmic determination of
equivalences of model categories [21] [22] which were intended to support plans
for view integration. Diskin and Cadish have used sketches for a variety of mod-
elling purposesincluding for example [12] and [13]. They have been concentrating
on devel oping the diagrammatic language of “diagram operations’. Several others,
including Lippe and ter Hofstede [20], Isam and Phoa [14], Tuijn and Gyssens
[24], Rosebrugh and Wood [23] and Baclawski et a [1], have been using category
theory for data modelling.

While some of these authors have attempted to use category theory to study par-
ticular data models, including the relational data model, none has given a precise
statement of the relational data model in category theoretic terms, and to the au-
thors' knowledge thereis no previous work aimed at obtaining explicit translations
between ordinary and category theoretic data models. (Probably thisis not surpris-
ing, since the need for such trandations only becomes apparent once the category
theoretic models have been applied in industry sufficiently widely.)

In parallel with this work, the authors and others have been exploring further
aspects of the sketch data model. Johnson, Rosebrugh and Wood have discovered
a mathematical foundation using equipments that unifies the treatment of the cat-
egories of database states, the query language (as treated in [9]), and updates, as
instances of modelling sketches in 2-categories [19]; Dampney and Johnson have
developed a database interoperation technique that reduces the need for attribute
harmoni sation acrossinteroperating data models[6]; and in less mathematical work
they have proposed the category theoretic data modelling techniques as a founda-
tional ontology for information systems research [¥].

10
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7 Conclusion

The propositions presented above answer the questions that motivated this paper. It
remains to remark on a couple of points that could lead to confusion.

First, we have compared a model based on category theory, the sketch data
model, with another model, the relational model, by presenting the schema and
models of the latter as categories. Thisis not to say that we have converted the
relational model into a category theoretic model for our purposes. Rather, we have
used the technique common in mathematics of studying the relationships between
mathematical structures by studying the categories of those structures (for example,
algebraic topology studies categories of topological spaces, categories of algebras,
and functors between them). It is merely a happenstance that one of the mathemat-
ical structures, the sketch data model, was already based upon category theory.

Secondly, the term “model” is remarkably overloaded in these fields. Rather
than introducing new terminology to try to distinguish the different uses, we merely
catalogue them here and leave it to context to disambiguate them. At the highest
level, the act of searching for a mathematical representation of thingsin the world
is called modelling. When the representations will be specifications of datatypes,
and when the datatypes can be chosen from a certain collection as part of a par-
ticular modelling methodol ogy, the collection and its corresponding methodology
are called data models. Thus the sketch data model, and the relational data model
depend upon certain basic datatypes (EA sketches and relations respectively). Fre-
quently the result of amodelling exerciseisreferred to as a data model. For exam-
plearelational schemais sometimescalled adatamodel of the particular real-world
domain being studied. Finaly a particular item, a snap-shot of a database for ex-
ample, which isan instance of adatamodel, isoften called amodel. Thislast usage
agrees with the use of model in logic and other fields— a model of atheory.

To summarise with an example “ These data are a model of a data model that |
developed using the relational data model when | wanted to model the information
requiredto...”
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