
p ()
URL: http://www.elsevier.nl/locate/entcs/volume61.html 13 pages

Sketch Data Models, Relational Schema and
Data Specifications ?

Michael Johnson

School of Mathematics and Computing
Macquarie University

Sydney, Australia

Robert Rosebrugh

Department of Mathematics and Computer Science
Mount Allison University

NB, Canada

Abstract

When different mathematical models are used for software analysis and development it is
important to understand their relationships. When the models are truly mathematical, and
when the aspects of reality that they seek to model are common, it may be possible to ex-
press their relationships in precise mathematical terms. This paper studies three mathemat-
ical models: The sketch data model, the relational data model, and the data specifications of
Piessens and Steegmans, and determines their relationships mathematically and in detail.
The constructions presented here answer reasonably long-standing theoretical questions,
and offer techniques that promise to be practically useful in integrating data models.

Key words: Category theory, data model, mathematical specification.

1 Introduction

This paper is one in a series of papers in which category theoretic methods are
used to develop and apply new data models for information system specification,
development and research. By way of example, recent results in this work have
included a new treatment of the view update problem [10], [17]. The new approach
has been applied inter alia to database interoperation [16], to the development of
enterprise information systems [5], and to software maintenance [18]. In addition,
with our colleague Dampney, the techniques have been tested in industry [3], [8],

? Research partially supported by the Australian Research Council, NSERC Canada, and the Ox-
ford Computing Laboratory.

c
2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume61.html

Johnson and Rosebrugh

[4]. The category theoretic data model that we use has come to be known as the
sketch data model.

As the sketch data model has been applied more widely, and particularly with
the development of new approaches to problems like the view update problem,
practitioners and theoreticians who work with other data models have increasingly
been seeking a way of translating between sketch data models and other data mod-
els. Translations would allow the sketch data model to be used as one part of a
development process involving other data models, and would allow problems (in-
cluding the view update problem) expressed in other data models to be brought
into the framework developed with the sketch data model. Potentially, sketch data
model techniques and results might be translated into other models more familiar
to practitioners.

The problem addressed by this paper is to make precise the relationship be-
tween the sketch data model and other data models. This is essentially a theoreti-
cal problem requiring the determination of the mathematical relationships between
mathematical models, but it also has important practical applications. At present
industrial problems are cast into the sketch data model and analysed there, often
without reference to detailed models in other frameworks. A precise connection
between for example the relational data model and the sketch data model will allow
extant relational models to be translated saving considerable development time.

The paper is organised as follows. In Section 2 we define categories of relational
database schema, and of sketch data model schema, and give constructions which
(functorially) convert a relational scheme into a sketch scheme and vice versa. We
certainly do not expect the constructions to be inverse, or even adjoint, but we do
give comparison maps between each of the composites of the two of them and the
respective identities. This gives a precise relationship between the schema of the
two data models, but we also need to explore the relationship between their models,
so in Section 3 we develop an equivalence of categories of certain models (states).
Much of the theory of relational databases has been based around normalisation,
and in Section 4 we show that the relational states corresponding to sketch data
models (instances of sketch data model schema) are in at least third normal form
and indicate how a danger to do with transitive dependencies is avoided. This
completes our study of relational and sketch data models, and should permit us
to relate sketch data models to many others since the relational data model is so
ubiquitous.

Having thus dealt with the main question of the paper, the relationship between
sketch data models and relational data models, and through them other disparate
data models, we move on to consider the relationship between the sketch data
model and another model which uses sketches: the data specifications of Piessens
and Steegmans. In Section 5 we make explicit the relationship between sketch data
models and data specifications, and most importantly note that there is not in gen-
eral an equivalence of model categories for corresponding specifications. We also
indicate why the equivalence fails, and we do still obtain a close relationship —
an equivalence of one model category with a full subcategory of the other. This

2

Johnson and Rosebrugh

answers another long standing question, that of the precise relationship between
these two closely related but heterologous data models.

Finally Section 6 briefly reviews related work, and Section 7 makes some clos-
ing remarks.

2 Relational schemes and EA sketches

A definition of a relational database scheme includes several components (see, for
example, [11]). Here we abstract the main items and describe a category of database
schemes.

Definition 2.1 A (relational) database scheme is a triple S = (D;R ;F) where

(i) D = hAdid2D is a finite family of finite sets — the domains of S
(ii) R = h1 pr

- Cr
cr- Dir2R is a finite family of primary key - relation schemes;

the elements of the set Cr are the column headings for the table (relation) r.

(iii) F = h(s f ; t f ;k f)i f2F is a finite family of foreign key definitions

where Cr is finite for all r 2 R, s f ; t f 2 R, and for all (s; t;k) 2 F , 1 k
- Cs and

cs(k) = ct(pt).

Note that we require a primary key to be a single column heading. The equation
at the end of the definition simply requires that the domains of the source and target
of a foreign key definition be the same.

Definition 2.2 A morphism of database schemes G : S - S 0 is specified by map-
pings GD : D -D0, GR : R - R0, GF : F - F 0 and a family of mappings
hG(r) : Cr -C0

r0ir2R with r0 = GR
(r) satisfying

(i) AGD(d)
= Ad (compatibility of domains)

(ii) GDcr = c0r0G(r) and pr0 = G(r)pr (compatibility of headings and primary
keys)

(iii) denoting GF
(s; t;k)= (s0; t 0;k0), s0 = GR

(s), t 0 = GR
(t) and k0 = G(s)k (com-

patibility for foreign keys)

In the sequel, when the component of G is obvious, we will omit the super-
script. Evidently, morphisms of database schemes form a category which we denote
DbSch.

A sketch [2] is a quadruple consisting of a graph, a set of diagrams in the graph,
a set of cones in the graph, and a set of cocones in the graph. Let Π denote the
function taking each cone to its base, and let Σ denote the function taking each
cocone to its base. We recall from [19] the definition of EA sketch.

Definition 2.3 An EA sketch E = (G ;D;L;R) is a sketch for which

(i) every π in L has Π(π) finite;

(ii) every σ in R has Σ(σ) finite and discrete;

(iii) there is an object 1 in G and the cone with empty base and vertex 1 is in L.

3

Johnson and Rosebrugh

If A is the vertex of a cocone in R, and the objects in the base of that cocone are
all 1, then A is called an attribute. A node of G which is neither an attribute nor
1 is called an entity. An EA sketch is keyed if, for each entity E in G , there is a
specified monomorphism kE : E- - AE , where AE is an attribute.

All of our EA sketches are henceforth assumed to be keyed and we denote the
category of keyed EA sketches and sketch morphisms (that also preserve keys)
by EASk. We wish to compare DbSch and EASk, and eventually their model
categories.

We begin by noting that it is straightforward to define a functor S from DbSch
to EASk.

Construction 1: Let S = (D;R ;F) be a database scheme. The sketch S(S) has
the following components:

The underlying graph of S(S) has:
(n1) a node denoted Ad for each d 2 D
(n2) a node denoted Cr for each r 2 R
(n3) a node denoted 1
and
(e1) an edge from 1 to Ad for each element of the set Ad

(e2) an edge from Cr to Acr(x) for each x 2Cr

(e3) an edge from Cs to Ct for each (s; t; f) 2 F .

The cones L of S(S) are:
(c1) the empty cone with vertex 1
(c2) a monic specification for the edge from Cr to Acr pr

The discrete cocones R of S(S) are exactly those making the Ad into sums of their
elements.

There are no commutative diagrams D, and the key for each entity is provided
by (c2).

This completes the construction of S(S). 2

It is important to notice that we did not add a node to represent the product of
the domains determined by cr. The monic specification arising from the primary
key for each relation scheme will guarantee that in models of the sketch S(S) the
value at any entity is a relation on its attributes.

Proposition 2.4 The definition of S(S) extends to morphisms of DbSch yielding a
functor S : DbSch -EASk. 2

In the other direction and of more interest for our purposes, we obtain a database
scheme by ignoring most of the constraint data for an EA sketch.

Construction 2: Let E = (G ;D;L;R) be a keyed EA sketch. The database scheme
T (E) has the following data:

4

Johnson and Rosebrugh

The family of domains DE is indexed by the set D of attribute nodes of G . The do-
main sets Ad are specified up to isomorphism by the cocones defining the attributes.

The family of relation schemes RE is indexed by the set R of entities. For each
r 2 R, the set Cr is the set of edges in G from the node r, except those edges which
are one path of a commutative diagram from r (the exception is discussed in Section
4). The mapping cr names the attribute nodes with edges from r, and the primary
key attribute of the target for the edges to entities. The primary key is the selected
monic specification.

The family of foreign keys FE is indexed by the set F of edges in G among entities
(with the exception noted in the previous paragraph). For each f 2 F , s f and t f are
the source and target of the edge, and k f is the element of Cs f associated with the
edge.

This completes the construction of T (E). 2

Proposition 2.5 The definition of T (E) extends to morphisms of EASk yielding a
functor T : EASk -DbSch. 2

We cannot expect adjunction between S and T , but their composites are related
to the identity functors.

First, note that we can easily define a comparison morphism

ϕS : T S(S) - S

in DbSch. Both T and S preserve attribute data, so the domain information for
T S(S) is exactly that of S . Construction 1 defines an entity of S(S) for each relation
scheme of S , and Construction 2 defines a relation scheme for each entity of G .
Thus, the set of relation schemes for T S(S) is the same as that for S . Primary
keys are preserved. However, Construction 2 introduces a new column head in Cr

whenever there is a foreign key from a relation scheme. The morphism ϕS should
identify new headings which so result. Finally, the foreign keys of T S(S) arise
exactly from those of S . Note that because there are no commutative diagrams in
S(S), the exception to edges giving foreign keys in Construction 2 does not apply
to S(S).

On the other hand, we have a comparison morphism of EA sketches

ψE : ST (E) - E :

As just noted, the attribute and primary key data is preserved by both construc-
tions. Indeed, by Constructions 1 and 2 the underlying graph of ST (E) has exactly
the same nodes G . It has an edge for each edge of G except those to which the
exception in Construction 2 applies. ST (E) has none of the commutative diagrams
of E . Its finite limit constraints arise only from monic specifications appearing as
keys in E , and its cocones are exactly those defining attributes.

5

Johnson and Rosebrugh

3 Models

Our interest in this paper is solely in models with values in the category of finite
sets set0. We denote the category of set0 models of an EA sketch by Mod(E) and
in this article do not call them database states in order to distinguish them from
objects of St(S) as defined below. Recall from [19] that for a keyed EA sketch E ,
Mod(E) is a preorder and all components of a morphism of models are monic.

For a database scheme S = (D;R ;F) we need to define the category of states
of S , which we will denote St(S). It too will be a preorder.

Definition 3.1 A state of S is a family D = hDrir2R of relations indexed by R
satisfying, for r 2 R and f = (s; t;k)2 F:
(s1) Dr has signature Cr, i. e. Dr is a subset of Πx2Cr Acr(x)
(s2) (primary key integrity) pr is a key, i. e. the following composite is monic:

Dr
� � ��Πx2CrAcr(x)

π �� Acr pr

(s3) (foreign key integrity) the projection Ds
k of Ds on Ak = Apt is included in the

projection of Dt on Apt as below (where Dk
s and Dpt

t are images of the composite of
the other two mappings in their square)

Ds �� ��
� �

��

Dk
s

������
� �

��

Dpt
t � �

��

Dt����
� �

��
Πi2CsAcs(i)

�� Acs(k)
= �� Act pt Π j2Ct Act(j)��

Definition 3.2 A morphism of states D m
- D0 of S is a family hDr

mr- D0

rir2R

of functions which commute with the inclusions of Dr and D0

r in Πi2CrAi.

Note that the mr are necessarily monic. The states and morphisms of S deter-
mine the category St(S). Given a model M of an EA sketch E with non-attribute
entities hErir2R, it is clear how to view the family hM(Er)ir2R as a family of re-
lations that is a state of T (E). Similarly, morphisms of models of E determine
morphisms in St(T (E)), and we obtain:

Proposition 3.3 If E is an EA sketch, there is a fully faithful functor

C : Mod(E) - St(T (E))

Indeed, since E is keyed, any morphism of states from C (M) to C (N), say arises
from a morphism of models. There is also a functor

ψ�

E
: Mod(E) -Mod(ST (E))

induced by the sketch morphism ψE : ST (E) - E noted in the previous section.

Proposition 3.4 There is an equivalence of categories

J : St(T (E)) -Mod(ST (E))

6

Johnson and Rosebrugh

satisfying ψ�

E
= J C .

Proof. As noted at the end of Section 2, ST (E) has the attribute and primary key
data of the database scheme T (E). To define J , note that a family of relations
which is a state D of T (E) allows taking the domains of the relations as values of a
model MD of ST (E) at the entities. Foreign key satisfaction defines the model MD

on edges of the sketch ST (E), and there are no commutativities or additional limit
constraints to check. In the other direction, for a model M of ST (E), the set M(E) at
an entity E is certainly a relation on the domains of the relation scheme CE in T (E)
because of the key constraint. Moreover, a model will satisfy all of the foreign key
constraints of T (E) Thus we get a database state DM in St(T (E)). On both sides of
the equivalence, homomorphisms are defined by compatible families of monos and
the categories are preorders. We leave verification that the constructions outlined
are essentially mutually inverse to the reader. 2

4 Normalisation

In principle the database scheme arising from a keyed EA sketch should be close to
being normalised. Recall that functional dependencies are specified from one set of
attributes to another. The edges between nodes in the underlying graph of a sketch
express functional dependency between their key attributes. We have sometimes
insisted that attributes not be the domains of arrows. In that case the EA sketch
does not express any functional dependency except:

(i) those from the key attribute of the source of an edge to the key attribute of its
target

(ii) the dependency of a non key attribute on a primary key.

Thus, if there are other functional dependencies an EA sketch cannot express them.
This appears to be a weakness of the model since we cannot expect the absence
of such functional dependencies. However, if we assume that all functional depen-
dencies are expressed by the EA sketch E , then the relation schemes of T (E) will
be in 3NF (indeed BCNF if there are no monic constraints from entities other than
specified keys).

The reason for the exception in Construction 2 is to avoid having a transitive
functional dependency arise in T (E). When there is a commuting diagram con-
sisting of a single edge and another commuting path from an entity E1 a transitive
dependency arises. For example suppose the following commutes in E

E1 ��

���
��

��
��

� E4

E2 �� E3

����������

Here, if A2 and A4 are the key attributes of E2 and E4, we have that A2 - A4 is a
derived dependency which would be transitive had we added the single edge from
E1 to E4 to CE1.

7

Johnson and Rosebrugh

The above situation appears to be the only one causing potential problems. Note
that if there are two (or more) edges from E1 to a second entity E2, they simply
create two attributes and two foreign keys, e. g.

CHILDREN
mother ��

father
�� PARENTS

Moreover, if two paths from E1 with the same target both have length greater than
one, the problem does not arise. Indeed, the target entity does not contribute an
attribute to CE1

The considerations above justify:

Proposition 4.1 With the dependencies implied by an EA sketch E , the database
scheme T (E) is 3NF.

5 EA sketches and data specifications

In their articles [21,22], Piessens and Steegmans have proposed the notion of data
specification for semantic data modelling. Here we relate models for this view of
data modelling with our EA sketch data models. We modify Piessens’ definition to
require that attributes have finite values since we are unconvinced by his arguments
for so-called ‘meta-finite’ structures in Computer Science.

Definition 5.1 A data specification (S ;A) consists of

(i) a finite sketch S = (G;D;L ;C)
(ii) for each T in V , the nodes of G, a finite set AT , called the set of attributes of

entity type T , and for each a 2 AT an attribute set ST (a), and we denote these
collectively by A(T) = Πa2AT ST (a).

So A can be viewed as a functor A : V - set (V the discrete category), which
is used in the following definitions. Denote the obvious inclusions I : V -G (V
the discrete graph) and J : set0 - set.

Definition 5.2 A model of a data specification (S ;A) is a couple (M;λ) where M
is a model of S in set0 and λ : JMI -A is a natural transformation.

Definition 5.3 A homomorphism from a data specification model (M;λ) to a data
specification model (M0

;λ0
) is a natural transformation φ : M -M0 satisfying the

equation λ0 Æ IφJ = λ.

In order to compare EA sketches and data specifications we first note that the
latter permit non-discrete cocones. We do not include such cocones in EA sketches
since they would, for example, permit constraints requiring identification of values
of base entities.

Proposition 5.4 Let (S ;A) be a data specification whose cocones C are discrete.
Then there is an EA sketch E such that Mod(E) is equivalent to the category of
models of (S ;A).

8

Johnson and Rosebrugh

Proof. Let (S ;A) be a data specification as in the statement. First augment its
sketch by adding an attribute cocone for each attribute set ST (a) in the specification
and an arrow from T to the vertex of the cocone. The resulting sketch E (S ;A) is
clearly an EA sketch.

Now any model M of E (S ;A) clearly defines a model of the data specification
(S ;A): restrict M to S and define λ using the M components of the arrows to ST (a)
attributes. Any morphism of states defines a homomorphism of models. Moreover,
any model (M;λ) of (S ;A) is the image under the correspondence just defined
of a state of E (S ;A). The state has the values of M on S and λ serves to define the
required arrows from M(T) to the (vertices of cocones constructed from the) ST (a).
Thus we have defined a functor from Mod(E (S ;A)) to models of (S ;A) which is
surjective on objects. To complete the demonstration of the claimed equivalence
requires only noting that the correspondence is fully faithful. 2

A slightly subtle point we should make explicit above is that the λ T defined
from a state are more precisely (but ignoring Piessens’ I and J)

M(T) -ΠM(ST (a))�= A(T)

and in saying that we have a functor we are assuming that the isos are chosen
coherently. Note that we obtain an equivalence rather than an isomorphism here.

Proposition 5.5 Let E be an EA sketch such that

(i) no attribute is the codomain of a commutative diagram

(ii) no attribute is in the base of a cone.

There is data specification (SE ;AE) whose category of models is isomorphic to
Mod(E).

Proof. Let E be an ER sketch as in the statement. Modify E to SE by removing
attributes, their defining cocones and any arrows to them. Call the resulting sketch
SE . Then, for each of the remaining entities T , and each arrow a from T to an
attribute in E , add a to AT and define ST (a) to be a set with as many elements as
the attribute at the codomain of a. This defines (SE ;AE):

Now a model M for E in set0 has finite values and satisfies the constraints
of SE , so that it restricts to a unique model ME of SE in set0. The values of M
on attributes are determined to within isomorphism and consistent with AE , so
the M(a) : M(T) - ST (a) for a 2 AT combine to define λT : ME (T) -A(T).
There are no naturality conditions to check, so ME and the λ’s determine a unique
model of (SE ;AE): Moreover any homomorphism of models of E determines a
unique homomorphism of models of (SE ;AE): Conversely, any model (M;λ) of
(SE ;AE) can be extended to a model M0 in Mod(E) since the assumptions (i) and
(ii) guarantee that the λT can be used to define M0 on the arrows deleted from E in
the passage to the data specification and a homomorphism M1 -M2 of models
can be extended to a unique morphism of models of E . 2

The need for conditions (i) and (ii) results from what we see as a gap in the
notion of data specification. Suppose that E1 and E2 are entities and A is an attribute

9

Johnson and Rosebrugh

of E . A very natural commutativity for E to include is a triangle:

E1
f ��

a f ���
��

��
��

� E2

a
����

��
��

��

A

A data specification model can impose this requirement only by ignoring a f . Worse
still, if A is the codomain of a commutative square or pullback, say, with attributes
at its corners, there is simply no way to allow A to be an attribute of the corners
in a data specification and enforce the constraints. Thus we can only obtain the
following by weakening these conditions and using the construction above.

Proposition 5.6 Let E be an EA sketch. There is a data specification (SE ;AE)

whose category of models has a full subcategory isomorphic to Mod(E).

6 Related Research

In the last decade there has been considerable growth in the use of category theory
to support semantic data modelling. Piessens and Steegmans used data specifi-
cations as described above to obtain results on the algorithmic determination of
equivalences of model categories [21] [22] which were intended to support plans
for view integration. Diskin and Cadish have used sketches for a variety of mod-
elling purposes including for example [12] and [13]. They have been concentrating
on developing the diagrammatic language of “diagram operations”. Several others,
including Lippe and ter Hofstede [20], Islam and Phoa [14], Tuijn and Gyssens
[24], Rosebrugh and Wood [23] and Baclawski et al [1], have been using category
theory for data modelling.

While some of these authors have attempted to use category theory to study par-
ticular data models, including the relational data model, none has given a precise
statement of the relational data model in category theoretic terms, and to the au-
thors’ knowledge there is no previous work aimed at obtaining explicit translations
between ordinary and category theoretic data models. (Probably this is not surpris-
ing, since the need for such translations only becomes apparent once the category
theoretic models have been applied in industry sufficiently widely.)

In parallel with this work, the authors and others have been exploring further
aspects of the sketch data model. Johnson, Rosebrugh and Wood have discovered
a mathematical foundation using equipments that unifies the treatment of the cat-
egories of database states, the query language (as treated in [9]), and updates, as
instances of modelling sketches in 2-categories [19]; Dampney and Johnson have
developed a database interoperation technique that reduces the need for attribute
harmonisation across interoperating data models [6]; and in less mathematical work
they have proposed the category theoretic data modelling techniques as a founda-
tional ontology for information systems research [7].

10

Johnson and Rosebrugh

7 Conclusion

The propositions presented above answer the questions that motivated this paper. It
remains to remark on a couple of points that could lead to confusion.

First, we have compared a model based on category theory, the sketch data
model, with another model, the relational model, by presenting the schema and
models of the latter as categories. This is not to say that we have converted the
relational model into a category theoretic model for our purposes. Rather, we have
used the technique common in mathematics of studying the relationships between
mathematical structures by studying the categories of those structures (for example,
algebraic topology studies categories of topological spaces, categories of algebras,
and functors between them). It is merely a happenstance that one of the mathemat-
ical structures, the sketch data model, was already based upon category theory.

Secondly, the term “model” is remarkably overloaded in these fields. Rather
than introducing new terminology to try to distinguish the different uses, we merely
catalogue them here and leave it to context to disambiguate them. At the highest
level, the act of searching for a mathematical representation of things in the world
is called modelling. When the representations will be specifications of datatypes,
and when the datatypes can be chosen from a certain collection as part of a par-
ticular modelling methodology, the collection and its corresponding methodology
are called data models. Thus the sketch data model, and the relational data model
depend upon certain basic datatypes (EA sketches and relations respectively). Fre-
quently the result of a modelling exercise is referred to as a data model. For exam-
ple a relational schema is sometimes called a data model of the particular real-world
domain being studied. Finally a particular item, a snap-shot of a database for ex-
ample, which is an instance of a data model, is often called a model. This last usage
agrees with the use of model in logic and other fields — a model of a theory.

To summarise with an example “These data are a model of a data model that I
developed using the relational data model when I wanted to model the information
required to . . . ”

References

[1] K. Baclawski, D. Simovici and W. White. A categorical approach to database
semantics. Mathematical Structures in Computer Science, 4:147–183, 1994.

[2] M. Barr and C. Wells. Category theory for computing science. Prentice-Hall, second
edition, 1995.

[3] C. N. G. Dampney and Michael Johnson. TIME Compliant Corporate Data Model
Validation. Consultants’ report to Telecom Australia, 1991.

[4] C. N. G. Dampney and Michael Johnson. Fibrations and the DoH Data Model.
Consultants’ report to NSW Department of Health, 1999.

11

Johnson and Rosebrugh

[5] C. N. G. Dampney and Michael Johnson. Enterprise Information Systems: Specifying
the links among project data models using category theory. Proceedings of the
International Conference on Enterprise Information Systems, 619–626, 2001.

[6] C. N. G. Dampney and Michael Johnson. Half-duplex interoperations for
cooperating information systems. In Advances in Concurrent Engineering, IN-1, 7pp,
International Institute of Concurrent Engineering, ISBN 09710461-0-7, 2001.

[7] C. N. G. Dampney and Michael Johnson. On Category Theory as a (meta)-Ontology
for Information Systems Research. In press for Formal Ontology in Information
Systems (FOIS), Maine, October 2001, ACM Publications.

[8] C. N. G. Dampney, Michael Johnson and G. M. McGrath. Audit and Enhancement
of the Caltex Information Strategy Planning (CISP) Project. Consultants’ report to
Caltex Oil Australia, 1993.

[9] C. N. G. Dampney, Michael Johnson, and G. P. Monro. An illustrated mathematical
foundation for ERA. In The unified computation laboratory, pages 77–84, Oxford
University Press, 1992.

[10] C. N. G. Dampney, Michael Johnson, and Robert Rosebrugh. View Updates in a
Semantic Data Model Paradigm. ADC2001, 29–36, IEEE Press, 2001.

[11] C. J. Date. Introduction to Database Systems, Sixth Edition. Addison-Wesley, 1995.

[12] Zinovy Diskin and Boris Cadish. Algebraic graph-based approach to management of
multidatabase systems. In Proceedings of The Second International Workshop on Next
Generation Information Technologies and Systems (NGITS ’95), 1995.

[13] Zinovy Diskin and Boris Cadish. Variable set semantics for generalised sketches: Why
ER is more object oriented than OO. In Data and Knowledge Engineering, 2000.

[14] A. Islam and W. Phoa. Categorical models of relational databases I: Fibrational
formulation, schema integration. Proceedings of the TACS94. Eds M. Hagiya and
J. C. Mitchell. Lecture Notes in Computer Science, 789:618–641, 1994.

[15] Michael Johnson and C. N. G. Dampney. On the value of commutative diagrams
in information modelling. In The Unified Computation Laboratory, eds Rattray and
Clarke, Springer Workshops in Computing, 77–84, Springer-Verlag, 1994.

[16] Michael Johnson and Robert Rosebrugh. Database interoperability through state
based logical data independence. International Journal of Computer Applications in
Technology, in press, 2001.

[17] Michael Johnson and Robert Rosebrugh. View updatability based on the models of a
formal specification. Proceedings of Formal Methods Europe 2001, 534-549, Lecture
Notes in Computer Science 2021, 2001.

[18] Michael Johnson and Robert Rosebrugh. Reverse Engineering Legacy Information
Systems for Internet Based Interoperation. In press for the International Conference
on Software Maintenance, Florence, November, 2001.

12

Johnson and Rosebrugh

[19] Michael Johnson, Robert Rosebrugh and R. J. Wood. Entity-relationship-attribute
models and sketches. Submitted to Theory and Applications of Categories.

[20] E. Lippe and A ter Hofstede. A category theoretical approach to conceptual data
modelling. RAIRO Theoretical Informatics and Applications, 30:31–79, 1996.

[21] Frank Piessens and Eric Steegmans. Categorical data specifications. Theory and
Applications of Categories, 1:156–173, 1995.

[22] Frank Piessens and Eric Steegmans. Selective Attribute Elimination for Categorical
Data Specifications Proceedings of the 6th International AMAST. Ed. Michael
Johnson Lecture Notes in Computer Science, 1349:424-436, 1997.

[23] Robert Rosebrugh and R. J. Wood. Relational databases and indexed categories. In
CMS Conference Proceedings, 13:391–407, American Mathematical Society, 1992.

[24] C. Tuijn and M. Gyssens. CGOOD, a categorical graph-oriented object data model.
Theoretical Computer Science, 160:217-239, 1996.

13

