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Abstract

Inconsistency management in component-based languages is the identification and resolution of
conflicting constraints or expectations between the different components which make up a system.
Here we present a category theoretical framework for detecting and classifying those inconsistencies
which can arise throughout a simulation. In addition, the framework permits us to apply techniques
developed for defining database view updates. With these, we can analyse the set of traces of a
system with respect to a particular behaviour in a subsystem.
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1 Introduction

In this paper we present a categorical framework for inconsistency manage-
ment and subsystem analysis for system specification languages. We draw
on existing work in the field of view updates of databases [10] to construct
the framework, which enables us to treat both individual states and individ-
ual components as views of the dynamic system. The advantages of this are
twofold. Firstly, we can identify and analyse inconsistencies with the aim of
toleration. For example, an inconsistency may be persistent, enduring over
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all or many states, yet confined within one subsystem only. Other inconsis-
tencies may be systemic but transient (occurring in few states). The relative
importance of these is, of course, dependent upon the system and user re-
quirements, and a full discussion is beyond the scope of this paper, although
some sample analysis is offered in Section 6. Secondly, we are able to use
categorical methods to perform some state-space analysis with reference to
individual subsystems or components. Specifically, we can examine all possi-
ble state transitions which restrict a given subsystem to a required pattern of
observations, and find the most efficient amongst these.

Examples throughout this paper are drawn from Rosetta [1], a require-
ments and specification language currently under development at Kansas Uni-
versity. The primary unit of specification in Rosetta is a facet, which de-
fines the characteristics and behaviour of one particular component. A facet
is therefore the analogue of a VHDL entity or a Z schema in that it de-
fines one component or viewpoint upon a system. Facets declare variables,
datatypes and functions and define constraints upon these variables and func-
tions. Rosetta has an inheritance mechanism, known as extension, which en-
ables a facet to inherit declarations and constraints (known as axioms) from
its parent facet. The other form of communication in Rosetta is via the use
of shared variables, either as parameters passed between facets, or as glob-
ally accessible public variables. It is the interaction of the constraints from
different facets upon a shared variable that is of interest here.

Previous semantic work based on Rosetta has consisted of a coalgebraic
approach to components and their behaviours, introduced in [14], and an in-
stitutional approach to the interactions between facets, discussed in [16]. The
former addresses the issues of behavioural equivalence by equating each facet
with a coalgebra and analysing the behaviour that results when we examine
the facets from different perspectives. The latter uses theories and institu-
tions [7] to explore some of the issues that arise when facets are combined,
in particular the questions raised by facet extension and change of notation.
The use in [16] of presentations [8] and their corresponding theories allow us
to express the concept of truth invariance under change of notation.

None of the previous semantic approaches have incorporated the ability to
analyse inconsistent components. That is, we have only been able to study
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systems where the constraints have been true throughout the entire analysis.
Inconsistency can arise from a number of causes, including software evolution,
user error, and under- or over- specification [5]. Once detected, the classifi-
cation [18] of inconsistencies allows us to manage them in a timely manner,
which is the subject of ongoing work in Rosetta. The framework we propose
now provides the capability to detect and broadly classify the most common
inconsistencies which arise in specification and requirements languages. One
of the major causes of inconsistencies in systems specified in Rosetta is over-
specification, where a system is overly constrained and cannot be implemented.

In addition to this, the work presented here discusses non-determinism, or
under-specification, in Rosetta systems. This arises when a specification does
not uniquely constrain the values of all its variables, which in the course of a
simulation may lead to several possible next states from a given point.

Section 2 introduces the syntax and semantics of Rosetta, as well as provid-
ing examples which are used throughout the paper. In Section 3 we introduce
the notion of a view update from the perspective of database design. In order
to apply the resulting category theoretical ideas to Rosetta, we first need to
associate a Rosetta specification with a category. Section 4 describes how we
do this, as well as demonstrating how we consider subsystems as a view of an
underlying system. We can also consider states as a view of an underlying
dynamic system, but this requires some more structure, found in Section 5.
This describes how we ensure that the framework implements the notion of
state correctly, and provides criteria for different forms of consistency. In Sec-
tion 6 we apply the theory to an example introduced in Section 2 to show
how different types of inconsistency can be identified. Additionally, there are
often cases where two states which are clearly distinguishable from one per-
spective (or facet) are seen from another as being identical, or behaviourally
equivalent. In Section 7, we formalise this notion and introduce the idea of a
canonical simulation path of a system with respect to a particular subsystem.
Such a path, if it exists, represents the least amount of work the system needs
to do in order to present a particular behaviour in that subsystem and remain
consistent.

2 Rosetta

Rosetta axioms are of the form t1 = t2 where t1 is a term. A term is either

• A constant, variable or function

• A function applied to terms
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• A term evaluated at a certain state sj

Terms which do not contain any components explicitly evaluated at a certain
state are known as base terms. The simple system shown in Example 2.1 will
be used throughout the paper in the construction of the semantic framework.
Here we declare two facets (or components within a system), f1 and f2, which
have both inherited a definition of the int abstract datatype, including an in-
crement function +1, from a parent facet (not shown). They have also both
inherited a precise definition of state from a parent facet called state-based.
This allows us to refer to the initial state of each facet (as s0), and the value
of a variable x in the subsequent state (as x′). Facet f1 declares a public vari-
able x, which is within the scope of facet f2 and a private variable y, which
is not. Facet f1 has three axioms, labelled T0, T1, T2, while facet f2 has one
axiom, labelled L0. The axiom L0 refers to the public variable x of f1 and
requires that the value of x be incremented each time facet f2 changes state.
Meanwhile, axiom T0 constrains the value of x to be 0 in both the initial
state of f1 and the state that results after one transition of f1. Axiom T1 re-
quires that the value of x be incremented every second state-change of facet f1.

Example 2.1 A simple Rosetta system

facet f1 : state-based facet f2 : state-based

public x:: int L0: x’ = x+1;

private y:: int

T0:x@s0 = 0, x@next(s0) = 0;

T1:x’’ = x+1;

T2:y@s0 = 0, y’ = y+1;

When facets f1 and f2 interact with each other, all constraints on the
variables they share must be satisfied in order for the system to remain con-
sistent. This means that when one facet changes state, and in doing so alters
the value of the shared variable x, then the other facet must also change state
else the constraints upon x will conflict. In the resultant system state, then,
both these facets will have changed state. This instantaneous change allows us
to identify the causes behind component state-changes and is referred to in [2]
as Δ-delay. Of course, in a general system it may be the case that there is
actually no next state of the ‘second’ facet which makes the system consistent,
and this situation is discussed further in Section 6.
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As well as the question of scheduling state-changes in order to obtain a
consistent system, we must be able to analyse the different types of incon-
sistency which can arise. A simple example is a specification of a light level
for safety lights in a building, which must be constantly illuminated. The
facet switchmethod accepts as input an argument setting giving the level
of light required, which must be either 1, 2, or 3. A function (definition not
shown) called transform uses this to decide how many lights should be illu-
minated, and this information is then output from the facet switchmethod.
However, this requires a certain amount of power, dependent upon the value
of the setting parameter. As seen below, our user has mistakenly added two
axioms (T0, T2) which conflict and so should be identified as an inconsistency.

Example 2.2 A switch mechanism

facet switchmethod(INPUT:: setting: [1, 2, 3];

OUTPUT:: lightnumber: int) : state-based

public int power1;

T0: power1’ = 2*setting;

T1: lightnumber’ = transform(setting);

T2: power1’ = 3*setting;

Suppose there is also an alarm circuit in this part of the building drawing
power, represented by the variable power2, and that we must constrain the
total power used from these circuits to be constant:

facet powerreq() : state-based

const int powerconstant = 10;

A0: power1 + power2 = powerconstant;

However, the designer of the alarm circuit might also constrain his power
requirements without consideration of any other circuits:

facet alarmreq(INPUT alarmon: int) : state-based

public int power2;

L0: power2 = alarmon;

When all these facets are placed together, there are several potential inconsis-
tencies due to shared variables. Section 6 shows how the framework presented
in this paper might allow us to analyse these. These examples can be ex-
pressed easily in both Z and VHDL, which means the ensuing discussion is
also applicable to this general class of specification languages.
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2.1 State Definitions

For each facet extending state-based, Rosetta defines a type named transi-

tion-number, together with

(i) a constant init: → transition-number

(ii) a function next: transition-number → transition-number

(iii) a variable current of type transition-number

This defines an abstract datatype (a datatype and associated morphisms)
which is equivalent to the natural numbers in the case of an infinite-state
system. In the case of a finite-state system, this abstract datatype is equivalent
to the integers modulo n. These elements allow us to express axioms relating
values in one state to values in another, and cannot be extended or used for any
other purpose in legal Rosetta. Any variable x of type dtype is implemented
as a function getx : transition-number → dtype. The value of this function
when given an argument nextj(init) gives us the value of x after j statechanges
of the facet in question. Of course, in an underconstrained system there may
be several valid values for x after one statechange, and hence several possible
next states from the current state. In this case, we say that this function getx

is not uniquely determined by the system.

Even if we can observe only a subset of variables, or properties of a state,
this can be used as an abstraction mechanism [19]. Abstraction mechanisms
often involve hiding variables, and mean we can perform analysis without re-
quiring the entire state-space. For a given abstraction mechanism, two states
are said to be behaviourally equivalent if they are identical under all observa-
tions visible under the abstraction mechanism in use.

Definition 2.3 In Rosetta, a visible observation is an observation, or term,
which returns a value of a type which is not transition-number.

3 Background of View Updates

3.1 EA Sketches

EA, or entity-attribute, sketches are a way of representing data (entities) and
relationships (attributes) between the data. As introduced in [13], an EA
sketch of a database consists of a graph G, where the nodes of G are the data
items (sets) in the database, and the edges of G represent the relationships be-
tween these items in the database. For example, in a graph representing a hos-
pital database the nodes Operations Performed and Doctors Practising
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Operations Performed

Morning Surgeon Afternoon Surgeon

performedperformed

Fig. 1. The operations performed consist of the union of operations performed by surgeons in the
morning and in the afternoon

may be related by means of the edge performed by. Each path in G then
represents a query which may be made in the database, such as “What opera-
tions were performed by Doctor Smith on 1st January?”. Additionally, an EA
sketch contains some extra information about the relationships in the form
of a family of pairs of paths {(p1, p2)} in G where each pair (p1, p2) has a
common source and target. This family represents those pairs of queries in
the database which produce the same result. Finally, an EA sketch identi-
fies those relationships and data items which form those particular cones or
cocones (inverted cones) known as limit cones and colimit cocones. These in-
clude maximal proper subsets and minimal containing sets of any data items
and occur, for example, when one data item (set) in the database consists
precisely of the disjoint union of two smaller sets. Figure 1 shows an example
of a colimit cocone.

Formally, we define an EA sketch of a database as a tuple (G,D,L, C). Here
G is the graph associated with the database, D is a family {(p1, p2)} of some
of the pairs of paths in G with each pair having a common source and target,
and L and C those cones (cocones) which are realised in the database as limit
cones (colimit cocones). From this tuple we can generate a category C where
objects and morphisms in C correspond respectively to the nodes and edges of
G. Paths in G then obviously correspond to the composition of the appropriate
morphisms in C. For each node n and edge e in G there is respectively a unique
object and morphism in C, with the following exceptions. Firstly, the images
of pairs of paths in D must have equal composites in C, and secondly cones
(cocones) in L (C) must correspond to limit cones (colimit cocones) in C. To
ensure this, C is constrained to have all finite products and coproducts. This
means there may now be two edges e1, e2 in G which correspond to the one
morphism. This occurs only if the pair (e1, e2) is present in D. Thus, C

encapsulates all the information contained in the tuple, in a framework which
allows us to reason about the existence of functors, morphisms, and limits.
Details of this are presented in [10,11,12]. A state of the database is then
a limit and colimit preserving functor D : C → Set, the category of sets
and set-valued functions. That is, given an entity (Doctors Practising), D
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D K

Anaesthetists

Anaesthetists GPs

.....

{.....}

{.......
.....}

K

D

P

C

Set{.....}

Surgeons

Surgeons

{Dr. Smith,
Dr. Jones}

{.....
.....}

Fig. 2. A view P of an underlying system

associates this with a set (the set of all practising doctors in this database).

3.2 View Updates

In many databases, users may be given only a view of the database [4] which
may not include all entities and, for those entities it does include, may not
include all relationships pertaining to these. Since the relationships between
entities are what govern the changes which can be made to a database, in
order to perform a simple update to what we can see in the view it may
be necessary to perform a series of more complex updates on the underlying
database if it is to remain consistent. This is exactly the same situation that
arises when we examine the interaction of a subsystem with the larger system
which consitutes its environment. If we define a category P consisting of
those elements of C visible in the view, then we can represent this view by an
inclusion functor K : P → C. Composition of a model D : C → Set with K

then gives us a state of the view P , ie. D ◦ K : P → Set. We denote this
composition action by K∗ and see that K∗ then represents a functor from the
category of database states D to the category of view states D ◦ K. Figure 2
shows the interaction of views and the underlying systems. Here, the category
P is the category of doctors practising in hospital, while the category C is
the category of doctors registered, which may include GPs, ophthalmologists
etc. in addition to anaethestists and surgeons. The mapping D ◦K associates
each object in P with a set. Thus we see that the object Surgeons in P is
associated with the set containing Dr. Smith and Dr. Jones.

A view update is said to be propagatable [11] if there is a unique minimal
change to the database which results in this update to the view [13]. We con-
sider this minimal change, which causes the least disruption to the underlying

C. Menon et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 27–5134



database, to be the canonical update. More details of this are available in [10]
and we discuss the implications for software engineering in Section 7.

4 Rosetta Solutions

We now consider the issues specific to those views defined by Rosetta specifica-
tions. We represent a Rosetta system containing facets f1, ..., fn by a directed
graph G.

Definition 4.1 The nodes of G, the graph corresponding to a Rosetta sys-
tem, are the datatypes (such as integer, bit) declared in the facets, and the
edges are the functions, variables and constants declared in each facet. Vari-
ables in a facet f1 of type dtype are represented as functions with domain
f1-transition-number and codomain dtype, while constants of this type
are represented as functions with a null domain and codomain of type dtype.
A special terminal node t serves as the null domain.

We exclude from G the variable current of type transition-number for
each facet, introduced in Section 2.1. This is because G represents an entire
system statically rather than dynamically, so we have no ‘current’ system state.
Section 4.3 describes how we achieve a dynamic perspective and where this
variable is used. The state-based facet is defined such that any facet extending
this declares its own transition-number datatype, and therefore there is
a separate node f1-transition-number for each facet f1 in G. However,
some datatypes and functions, such as integer, are shared throughout the
system. These make up the data universe [6], and ensure that all facets have
a common vocabulary with which to communicate. As such, there is only one
node in G to represent a datatype in the data universe. A discussion of exactly
which datatypes and functions are shared within a Rosetta system is beyond
the scope of this paper, but [16] provides some results from an institutional
approach. We can now form an EA sketch tuple (G,D,L, C) based on this
graph G.

Definition 4.2 The paths in D are obtained from the Rosetta axioms, which
are all of the form t1 = t2 for terms t1, t2

This naturally gives us a pair of paths in the graph with common source and
target.

Remark 4.3 There are no axioms within D which explicitly constrain what
state one facet is in relative to any others.

Because D is generated solely from these axioms there is nothing that pertains
to state synchronisation in this tuple. While such axioms can be deduced if
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the system is to remain consistent, the omission of them allows us to consider
inconsistent systems within this framework. In addition, such axioms would
imply that some form of scheduling, or relative ordering of state changes, has
already taken place, which is the optimal solution we seek using canonical
state-changes.

Definition 4.4 Elements of C are datatypes dtype and those morphisms {mi}
with codomain dtype which are intended to be implemented always as an ini-
tial algebra. That is, every cocone within C is in fact simply a co-product of
ones.

Remark 4.5 For any facet f1 the f1-transition-number datatype and its
generators init and next as introducted in Section 2.1 is a co-product of ones
in C.

For our examples, the integers are also represented by a cocone within C.
The user may, depending on the system, wish to define additional cones and
cocones in L and C. For example, we can use limits to ensure that a function
between two sets is injective.

As introduced in Section 3, we can generate a category C from this tuple,
with images of pairs of paths in D being commutative diagrams in C, and
images of L and C being respectively limit cones and colimit cocones.

4.1 Example Sketch

For the code in Example 2.1, D consists of the information given in the axioms
which make up the Rosetta code:

f1getx ◦ f1next ◦ f1next = +1 ◦ f1getx (facet f1 axiom T1)

f1gety ◦ f1next = +1 ◦ f1gety (facet f1 axiom T2)

f2getx ◦ f2next = +1 ◦ f2getx (facet f2 axiom L0)

...

These axioms do not capture the fact that facet f2 can see the public variable
x from facet f1. The issue of consistency (that these are not in fact separate
variables and so must have the one common value in each given state) is
discussed in Section 5. In Example 2.1 the only relevant cocones in C are the
abstract datatypes f1-transition-number and f2-transition-number.

Figure 3 shows the category C for the code in Example 2.1.
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f1init f2init

f2next

t

f1−
transition−

number
f1next

int

+1

0

f1getx

f1gety
f2getx

f2−

number
transition−

Fig. 3. The category C generated by the graph G associated with Example 2.1

4.2 Models

A model of the system is a functor D : C → Set which preserves limits and
colimits. D maps Rosetta datatypes to sets, and Rosetta variables, constants
and functions to set-valued functions, thus providing a realisation of the cat-
egorical representation of a system. In an underdefined system there may be
several valid Ds. For example, if in facet f1 the value of an integer variable
x after j transitions is undefined, then there are an infinite number of valid
models D, each of which maps x after j transitions of f1 to a different inte-
ger. Each of these Ds, therefore, provides us with a different jth state. If,
however, the value of x after j transitions is constrained to be 0, then the only
valid models are those D for which D(f1getx ◦ f1nextj ◦ f1init) = D(0). A
single D can then be said to provide us with one trace for each facet. Because
D preserves limits and colimits, it maps a coproduct of n ones in C to a set
consisting of n distinct elements. One consequence of this is:

Remark 4.6 D is injective upon elements of f1-transition-number for
each facet f1.

While D provides us with a value for any variable in any state, we need further
framework to analyse an individual system state.

4.3 State categories

In order to consider individual states and the transitions between them, we
think of a state as simply being a view (as in Section 3) of the entire dynamic
system. We do this by defining another tuple (GV ,DV ,LV , CV ). The category
generated from this, referred to as the state category, will represent the set
of observations which can be made in any state, as well as information about
how many transitions are required to obtain a state in which a given set of
observations could have been made.

Definition 4.7 Nodes of GV are the nodes of G, while edges of GV are the
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variables, constants and functions declared in the facets. However, unlike
Definition 4.1, a variable is represented in GV as a function with null do-
main, just as a constant is. We also include the variable current of type
f1-transition-number for each facet f1.

LV and CV are identical to L and C because the constraints on cones and
co-cones are not relaxed. The pairs in DV are derived from D, and the extent
to which these families differ is based upon the type of analysis that we intend
to do. This is because any equalities within DV will apply to all states. Thus,
if the user wants the ability to examine all inconsistent states, DV will be
empty. If, however, the user is not interested in analysing facets where certain
inconsistencies may occur, then the axioms preventing these inconsistencies
may appear in DV . The user will generally exclude from DV any axioms which
would enforce that a shared variable must have only one value at any given
time, no matter how many different facets we may view it from. While such
axioms can be included within DV , this type of error is the cause of many
inconsistencies within a system and is one of the major issues of interest of
Rosetta. In order to study why such an error might arise, we need a framework
which permits us to examine the systems in which it does so. Section 5
discusses how we might express this situation, and consider how to correct
such an error.

An example of CV for the facet in Example 2.1 is shown in Figure 4. Here,
the morphism f1so :t → f1-transition-number is the equivalent of the
f1init morphism in the category C (Figure 3), indicating the initial state of
facet f1. The difference in naming is to clarify the interaction of functors in
Section 5. The morphism f1current identifies the number of transitions facet
f1 has undergone at any given time, as introduced in Section 4. Because this
is a view of a single state of the system, we do not need a function expressing
the value of a variable x after every transition of a facet f1. (This function
was present as a morphism f1getx : f1-transition-number → int in the
category C). This is because we are only concerned about one single value of x

— the value in the current state. As such, we can express this as a morphism
v1x : t → int. Again, the change in the naming conventions is to ensure
that it is obvious when we refer to a morphism in C as opposed to a morphism
in CV .

A trace element is then a limit- and colimit-preserving functor R : CV →
Set. R serves to map the elements of CV to their values in (one of the) states
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transition−
number

f1−
transition−
number

f2nextf1next
0

v2x

v1y

+1

int

t
f1current

v1x

f2current

f2−

f2s0

f1s0

Fig. 4. The category for the abstract state structure of the system in Example 2.1

represented by this trace element. It therefore represents an assignment of
values to variables together with information about how many transitions are
required to get to a state in which this assignment can hold. This is achieved
by the use of the variable f1current in CV (for facet f1) which represents how
many transitions f1 has undergone. If for a given trace element R, we have
R(f1current) = R(f1nextj ◦ f1s0) we say that R represents the system in a
state achieved after j transitions of facet f1.

In a similar manner, we can isolate a subsystem P from the larger system in
question and examine trace elements of this subsystem only. If PV represents
the state category for P , then a trace elements of P is of the form T : PV →
Set. Specifically, such a T is partly defined by a functor K : PV → CV , as
introduced in Section 3.1. Composition of K with R will then act as a view
functor T = R ◦ K : PV → Set. It is these models that are of most interest
later, when we examine the restriction of system state changes to subsystems.

5 States as Views

So far we have shown how both subsystems and states of a system can be
regarded as views using this framework. However, we need to constrain the
relevant views in order to identify inconsistencies and their causes. In order for
a trace element R to represent a consistent state, we require firstly that R pre-
scribe an assignment of values to variables which obeys the Rosetta constraints
for a state achievable after R(f1current) transitions. These constraints may
take two forms:

(i) Constraints which the user wants to hold in all states, such as x=0, or
those such as 1+2 = 2+1 which are not dependent upon the current state.
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(ii) Constraints which refer to a particular state, if this is the state under
consideration (such as x@s0=0, if we are considering state s0)

Secondly, in order for a state to be consistent, any shared variable cannot
have multiple values at one time, regardless of how many facets can see this
variable. That is, all facets must agree on the value of any variables that are
visible. To enforce these ideas of consistency, we define what it means for a
trace element R to be consistent.

Definition 5.1 A trace element R : CV → Set of a system S is consistent if
and only if the following are satisfied:

(i) For any axiom (t1 = t2) where t1, t2 are Rosetta base terms (as introduced
in Section 2) and v1, v2 are those morphisms in CV representing these
terms, we require R(v1) = R(v2).

(ii) For any axiom (t1 = t2) where t1, t2 are Rosetta terms which consist of
terms t̂1, t̂2 evaluated after a particular number of transitions j and v1, v2
are the morphisms in CV representing t̂1, t̂2, we require R(f1current) =
R(f1nextj ◦ f1s0) =⇒ R(v1) = R(v2).

(iii) For all morphisms v1x, v2x : t → dtype in CV where v1x and v2x respec-
tively represent a shared variable x of type dtype as perceived by facets
f1, f2, then R(v1x) = R(v2x)

Definition 5.1 provides us with three different consistency conditions for an
individual state. Firstly, a state R which satisfies part (i) and (ii) is a state
in which each facet of the system is internally consistent. That is, in state R,
any facet in the system is itself consistent in that all constraints within that
facet are satisfied. However, there is no guarantee that the facets together
form a consistent system in this state, as they may still be unable to agree
upon the values of any shared variables. We refer to this type of consistency
as component-wise consistency. On the other hand, a state R which satisfies
part (iii) is a state in which the component facets agree on the values of all
shared variables - but none of the constraints in the system beyond this are
necessarily satisfied! This is referred to as interaction-consistency. Obviously,
these refer to the extremes of possible inconsistencies. Generally the majority
of constraints are satisfied and the majority of shared variables are agreed
upon. It is this expectation which enables us to tolerate inconsistencies when
they do arise. It is important to realise that these consistency conditions refer
to an individual state only, and for a succession of states to be consistent we
also require that any constraints relating the values of variables in one state to
the values of variables in another be satisfied. These axioms are also present
in C, in such forms as x’ = x+1, and Section 7 explains how we ensure that
an implementation of state reflects these.
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As part of our treatment of a state as a view, we define an inclusion functor
R̄ : CV → C and then constrain R̄ to represent a point during simulation at
which each facet has undergone a certain number of state-transitions. That
is, the morphism to which a given R̄ maps f1current determines the state of
facet f1. All R̄ must act as the identity on all Rosetta datatypes in CV (note
that these datatypes are also present in C).

Definition 5.2 A functor R̄ : CV → C is valid only if R̄ is the identity on all
morphisms corresponding to the common edges of GV and G. Also, for each
variable x seen by a facet f1, the action of R̄ must be such that

• R̄(f1current) = f1nextk ◦ f1init =⇒ R̄(v1x) = f1getx ◦ f1nextk ◦ f1init

where v1x is the morphism in CV representing x as seen by f1

This ensures that Rosetta axioms in C originating from a facet f1 which
constrain a variable x do in fact affect the morphism in CV which represents
x as seen by f1, and not a CV morphism representing some other quantity
y. It also ensures that R̄ incorporates the correct mappings for the transition
numbers so that these do correctly implement state. That is, if the f1current

variable indicates that k transitions have been undergone by facet f1, then
R̄(v1x) must correspond to the morphism in C indicating the value of x as
seen by f1 after k transitions precisely.

R̄ for Example 2.1 can be seen in Figure 5. Here we can see that f1s0,
the morphism in CV corresponding to the initial state of facet f1, is mapped
to f1init, the morphism in C corresponding to the initial state of facet f1.
This ensures that the only difference between different R̄ is what morphism
R̄(f1current) corresponds to, for a facet f1. Obviously, for some j, we will
have R̄(f1current) = f1nextj ◦ f1init. If this is the case, then by Defini-
tion 5.2, R̄ will map v1x to the morphism f1getx ◦ f1nextj ◦ f1init in C. We
can then express a valid R as the composition of a system model D and such
a R̄.

Theorem 5.3 If R = D ◦ R̄ where R̄ is valid as in Definition 5.2, then R is
a component-wise consistent state.

Proof. Part(i) For any equality (t1 = t2) where t1 and t2 are base terms
(Section 2) which are Rosetta functions, constants, or function applications,
there is a commutative diagram m1 = m2 in C, where m1, m2 are the mor-
phisms in C representing the terms t1, t2. Letting v1, v2 be the morphisms
in CV representing the Rosetta terms t1, t2, then since by Definition 5.2 we
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Fig. 5. The operation of R̄ on parts of CV

know R̄ is the identity inclusion functor on constants and functions, we have
R̄(v1) = m1 = m2 = R̄(v2) and hence R(v1) = R(v2).
If t1, t2 are base terms involving variables seen by f1, then this equality
also holds because for some j, R̄(v1) = m1 ◦ f1nextj ◦ f1init and R̄(v2) =
m2 ◦ f1nextj ◦ f1init by Definition 5.2, and hence R̄(v1) = R̄(v2). For R

defined as above, this then implies R(v1) = R(v2)
Part(ii) If there is an axiom (t1 = t2) which holds in the jth state only,
then without loss of generality we can say t1 and t2 consist of Rosetta base
terms t̂1, t̂2 evaluated after j transitions. This means that for m1, m2 those
morphisms in C which represent t̂1, t̂2, the equality m1 ◦ f1nextj ◦ f1init =
m2 ◦ f1nextj ◦ f2init holds within C. If v1, v2 represent the terms t̂1, t̂2 in
CV then by Definition 5.2,
R̄(f1current) = f1nextj ◦ f1init =⇒ R̄(v1) = m1 ◦ f1nextj ◦ f1init and
R̄(v2) = m2◦f1nextj ◦f1init. That is, R(v1) = R(v2) when R(f1current) =
R(f1nextj)◦R(f1s0), since we remember from Remark 4.6 that D is injective
upon elements of fi-transition-number. �

To ensure interaction-consistency for a state R, we need to add axioms which
constrain shared variables to be equal. Such axioms do not form part of
the specification, since this would reduce the capability for independent con-
struction of facets. As such, we define a new category C̄V which represents
the abstract structure of a state (as does CV ) but in which axioms enforcing
the equality of shared variables are included. It is obvious that any model
D′ : C̄V → Set of this category C̄V will then obey these constraints.
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Definition 5.4 We define a tuple (GV ,DV

⋃
D′

V ,LV , CV ), where D′
V con-

sists of all pairs (e1, e2) where e1 and e2 represent a shared variable as ob-
served by two different facets. GV , DV , LV and CV are those elements of the
tuple associated with CV , introduced in Secion 4.3. We refer to the category
associated with this new tuple as C̄V .

That is, for a variable x shared between facets f1 and f2, we include the
pair (f1.x, f2.x) in D′

V to enforce f1x = f2x. The category C̄V is structurally
identical to the category CV , save for the addition of these equalities. We
formalise this similarity below.

Definition 5.5 Define a functor X : CV → C̄V where X is the quotient map,
or the identity modulo the addition of the axioms from D′

V . We also define a
functor Y : C̄V → Set, placing no restrictions on Y .

That is, for morphisms v1x and v2x in CV representing a shared variable x as
seen by facets f1 and f2 respectively, the axiom X(v1x) = X(v2x) applies to
C̄V . The functor Y serves as a model of C̄V .

Theorem 5.6 If R = Y ◦ X where X satisfies Definition 5.5, then R is an
interaction-consistent state.

Proof. Let v1x, v2x : t → dtype be morphisms in CV representing the value
of a shared variable x as seen by facets f1 and f2. Then X(v1x) = X(v2x)
by definition and therefore Y ◦ X(v1x) = Y ◦ X(v2x), ie. R(v1x) = R(v2x).

Lemma 5.7 R is consistent and valid iff

(i) R = D ◦ R̄ for some valid R̄ (as in Definition 5.2) and system model D

(ii) R = Y ◦ X for X which satisfies Definition 5.5

(iii) R preserves limits and colimits

The first two conditions of this lemma simply state that to be consistent a state
R must be both component-wise consistent (Theorem 5.3) and interaction-
consistent (Theorem 5.6). The final condition refers to the situation where
a user has specified conflicting constraints which can be satisfied only by an
implementation of some datatype as something other than an initial algebra.
For example, the effect of implementing a pair of axioms such as x=1; x=0 into
C is to incorporate the axiom 1 = 0. While this is legal in the construction
of C, it is usually not what the user intended. Thus, for the strictest form of
consistency of one state, we use the fact that the relevant datatypes in CV do
not have these additional equalities. Any R in this situation which is factored
through a valid R̄ can therefore not be colimit-preserving. That is, R is a
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valid model of a state of the specified system when the diagram in Figure 6
commutes, and R preserves limits and colimits. By specifiying that a model T

V

R Y

D

C

Set

R

C

V

K

P

X
VC

Fig. 6. Some commutativity is required for R to be valid

of a partial system P be a functor R ◦K, there is an obvious parallel between
database views and partial systems.

6 Example Analysis

We are now in a position to examine the inconsistencies which may arise in
Example 2.2. Firstly, examining facet switchmethod in isolation, we see that
the simultaneous presence of axioms switchmethod.T0 and switchmethod.T2

imply that there is no state R of this system which satisfies part (iii) of
Lemma 5.7. This is because in any state R the integers form an infinite co-
product of ones in CV , yet R does not preserve this coproduct, since it is not
present as an infinite coproduct within C. These persistent inconsistency er-
rors are difficult to work around or tolerate, as it is generally unclear what the
user has intended. However, they can be detected relatively easily by testing
components in isolation. In this case, the removal of axiom switchmethod.T2

is sufficient to resolve the inconsistency. On the other hand, when we place
all facets together, by some means such as

facet security = switchmethod AND powerreq AND alarmreq;

we may see an additional inconsistency occur. This is due to a potential
conflict between the constraints set upon the power2 variable, depending upon
what input is received from the user. Many of the otherwise valid system
models D which exist fail to form part of a commuting diagram as in Figure 6,
due to conflicting constraints from the alarm circuitry and light switch. In
this case, a D which worked perfectly when testing in isolation (for example,
one which implemented alarmon = 20) fails when we attempt to resolve the
areas of overlap, since there exists no functor Y which may implement this.
This is a different kind of inconsistency, as the issue here is that we cannot
guarantee that the diagram corresponding to a particular implementation will
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commute. Resolution for these is more flexible, as it is possible either to
add information to the system (for example, adding axioms constraining the
possible value of alarmon) or to relax constraints (for example, removing the
axiom A0). In practice, such errors often indicate underspecified systems and
as such the recommended practice is to further constrain the system. It is
worth noting that this is possible because the nature of the problem is such
that any functors that form a commuting diagram are also compatible with
the other constraints.

7 Canonical Morphisms and State Progression

In order to examine traces, we now develop a mathematical representation of
state transitions as progressions between valid trace elements. This enables
us to compare those traces which produce some particular observations in
a subsystem, or those underlying system transitions which restrict upon a
particular subsystem to produce a desired behaviour. This is especially useful
when discussing subsystems exhibiting critical behaviour, as we can abstract
away from implementation issues to compare the family of traces which display
the required observations. In particular, we are interested in the shortest
possible trace, or ‘most efficient’ sequence of state-changes of the system which
guarantee the subsystem undergoes the particular statechanges in which we are
interested. This is the specification analog to the database issue of identifying
propagatable views. In order to express this mathematically, we need the
following categorical concepts.

7.1 Cocartesian morphisms and fibrations

Let R, R′ and R′′ be objects in a category L, let A be an object in a category
L′ and let K∗ be a functor L → L′. A morphism r : R → R′ in L is a
pre-cocartesian lifting [9] of t : K∗(R) → A if

(i) K∗(r) = t

(ii) For all other r′ : R → R′′ in L where K∗(r′) = K∗(r), there is a unique
r′′ : R′ → R′′ such that r′′ ◦ r = r′ and K∗(r′′) = id.

This can be seen in Fig. 7. Note that two pre-cocartesian liftings of t will
be isomorphic, and that it is also implied that A = K∗(R′). A cocartesian
lifting is a slightly stronger property, used often in topology. To use this
mathematical property in a database setting, we let objects (eg. R, R′) of L

be states of the underlying database, and objects of L′ be states of the ‘view’
database. We can then say that the morphism (or state-change) r in L is
the canonical update corresponding to the view update t. That is, r is the
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Fig. 7. A pre-cocartesian lifting

minimal underlying database changed required for us to observe the change t

in the view.

7.2 Application of View Updates to Specification Languages

Each component, or family of components P , also has a particular view of the
entire system and there may be many underlying system state-changes which
restrict to a particular state-change of P . The immediate example is where
two families of components in a system share no common data. In this case,
any system state-change involving only facets in the first family will always
restrict to the identity (or no observable state-change) of those facets in the
second family.

Definition 7.1 The canonical underlying system state change, with reference
to a given state change t of a family of components P , is the underlying system
state-change which restricts to t when examining P , and which posesses the
’pre-cocartesian’ property introduced in Section 7.1, for the category of states
of the system.

To illustrate, in a system which models a Rubik’s cube [17], we may want
to know the shortest sequence of moves of the cube which allow us to observe
a sequence of patterns on one face. Here, the existence of a shortest sequence
is clearly dependent upon the patterns we want to see. In the case where
a canonical morphism exists for every possible simulation path of a family
P of components, we know exactly how much work, in terms of underlying
statechanges, has to be done by the system to allow this family P to function.

7.3 Applications

For each system we define a category L where objects in L are the valid trace
elements R, and morphisms in L are a way of moving between the states
these trace elements represent. This then lets us implement other abstraction
mechanisms by clustering distinct trace elements which are indistinguishable
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under the abstraction mechanism in question to represent the same state. The
example we present below does not use any abstraction mechanism. That is,
two objects R, R′ in L are equal iff R = R′ as functors. Since any valid
consistent state R preserves limits and colimits, it follows that it is injective
upon the infinite coproduct of ones representing the f1-transition-number

abstract datatype within CV for any facet f1.

Lemma 7.2 Given any valid trace element R = D ◦ R̄, there is a unique R̄

for which this equality holds.

The unique R̄ can be found easily since R(f1current) = R(f1nextj ◦
f1init) for some unique j, and Definition 5.2 then allows us to precisely iden-
tify the action of R̄.

There are many different definitions of morphisms, the simplest (and most
restrictive) being one we use to analyse what causes facet state-changes. For
example, a state-change could be driven by receiving input, or in order to
retain consistency after another facet changes state and hence changes the
values of some variables. The following definition emphasises those facets
which change state together and the reason for this, rather than the actual
states involved throughout a sequence of changes. To model this we define a
morphism r : R → R′ to be a tuple (R, [R̄i], R

′), where [R̄i] is an ordered list
of functors R̄i : CV → C as in Section 5. This list tells us how a system may
move from some state represented by R to some state represented by R′, by
providing us with information about which components change state together
(ie. separated only by a Δ-delay). We can then examine how certain state
transitions of a subsystem affect other components, and from this determine
an objective measure of the interaction between the subsystems.

In order to ensure that the progression does in fact reflect state-changes
with regard to the implementation of transition-number within C, we place
some restrictions on elements of the family [R̄i]. Specifically, each facet may
change state at most once in each system state change, and any state-change
of a facet increments the value of the current variable pertaining to that
facet. That is, for any facet f1, we require either

(i) D ◦ R̄i+1(f1current) = (D ◦ R̄i(f1current)) + 1 or

(ii) D ◦ R̄i+1(f1current) = (D ◦ R̄i(f1current))
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One possible definition of composition is simple concatenation of the or-
dered lists [Ri]. Thus, for r = (R, [R̄i], R

′), and r2 = (R′, [R̄′
j], R2) then

r2 ◦ r = (R, [[R̄i], R̄′, [R̄′
j]], R2).

As introduced in Section 3, we may wish to examine those morphisms
which produce a particular behaviour t : T → T ′ in a subsystem P , where
T and T ′ are trace elements representing states of P . In the case of the
Rubik’s cube, we let state be distinguished by the colours shown on each
face, and let P represent a subsystem consisting of certain coordinates on the
surface of the cube in which the user is interested. We may now examine
the rotations which change the colour of these coordinates in the ordering
as defined by t. Note that t does not specify to which colour the positions
change, merely that they do change in a certain order, starting from the colours
specified in R and finishing with the colours specified in R′. In particular, we
may be interested in the pre-cocartesian lifting of t, which is the underlying
morphism r : R → R′, which restricts to t, and which is comprised of the
fewest possible state-changes. With composition defined as concatenation,
this means that for any other r′ which restricts to t, r′ consists of the the
statechanges prescribed by r, followed by a number of state-changes which do
not affect any component of P . The requirement of uniqueness then follows
from our definition of equality. For the Rubik’s cube, this corresponds to the
fewest rotations which allow us to observe these changes to the face.

Clearly, r then represents the least amount of work the system has to do in
order to achieve a simulation path t for the subsystem P . Not all morphisms
in every subsystem will have pre-cocartesian liftings, and the existence of these
is naturally dependent on the definition of morphisms. The most restrictive
definition (above) admits of very few systems for which a relatively small
subsystem may have a pre-cocartesian lifting, because it is rare for a small
subsystem P to ‘control’ the possible morphisms r′ in the system to such an
extent. Such a definition is primarily used when we want to examine two
subsystems P , P ′ which together uniquely define the morphisms of a system.
Such an approach is similar to the idea of database view complement [3] and
is of interest to Rosetta users because it provides a mathematical analog to
the notion that the different perspectives provided by facets in fact define a
system. In the future, we will introduce new abstraction mechanisms to dis-
tinguish objects within the category L. For example, we can consider a state
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as being defined by a functor R : CV → Set, restricted to elements which are
not of type transition-number. That is, the number of transitions we take
to get to a particular state does not figure in distinguishing the state. Alter-
natively, we can use a method of state-space reduction, which amalgamates
states for which the values of all ‘accessible’ variables, including those in the
subsequent states, are the same. This is used to analyse systems in which
information from some states is lost, and hence it becomes no longer possible
to tell some states apart. We will also contrast the different definitions of mor-
phism. These incorporate changes such as allowing equality of morphisms to
be relaxed to something less restrictive than syntactic equality. For example,
we permit the sequence of intermediate [R̄i] which make up a morphism to be
re-ordered without this resulting in a new morphism. This lets us dissociate
those changes in a morphism which have no impact upon each other, so that
it no longer matters in which order the system performs them. Another pro-
posed change is to compare morphisms which are defined by the components
which must change state together — as defined here — with morphisms which
are defined by the actual states which the system passes through during the
course of the associated progression.

8 Discussion

The advantage of a framework based around the diagram in Figure 6 is that,
given an inconsistent system, we can identify why these inconsistencies occur
without analysis of the code itself. For example, if there is no functor Y :
C̄V → Set in Figure 6 such that the diagram commutes, then the problem lies
in the interaction of the facets, rather than the individual facets themselves.
Such an error cannot be found by testing the components in isolation, as it
only occurs when the facets are placed in an environment which implements
these conflicting axioms. If R does not preserve limits and colimits, then
the constraints imposed on one facet are mutually exclusive and this can be
detected by testing in isolation. We may also use this when trying to assess
the suitability of components for different environments.

Being able to formulate questions of consistency within a category theo-
retical framework allows us to use established category theory tools, such as
reasoning about the existence of functors, to address these issues. In addition,
the framework here permits us to reason about traces and minimal paths by
means of the category theoretical concepts of pre-cocartesian and cocartesian
liftings. We can therefore identify certain state-changes which must be per-
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formed in order to produce a given observation, a property particularly useful
when specifying systems with critical behaviour such as security or alarm sys-
tems. They also serve as an indication of how much work a system must do
in order to produce a specified behaviour, and as such indicate the efficiency
of any particular implementation.

9 Conclusion

We have produced a semantics based on category theory for the study of
Rosetta and other similar specification languages such as Z and VHDL. By
modelling a system as a category, we have abstracted away from individual
language issues. By adapting the view update problem, we have enabled a
user to analyse components both individually and within a chosen environ-
ment, as well as study individual states and the progression between them.
Our approach has also made it possible to study inconsistent systems and to
identify the source of the inconsistency. In addition, the use of precocartesian
and cocartesian morphisms within the same category theory framework has
enabled us to compare the choices available in a non-deterministic system.

Further work will consider the possibility of defining degrees of correctness
of systems, where certain inconsistencies may be tolerated or circumvented.
We will also provide further definitions of morphisms between states, which
will enable a user to examine a dynamic system from several different per-
spectives. The application of fibrations [9] is a further extension which allows
a user to deduce the behaviour of an unknown system based simply on the
behaviour defined by a certain perspective or subsystem. By using a common
framework we have ensured that the results from these different types of anal-
ysis can all be expressed using the same vocabulary, and that any relationships
between them will be immediately apparent.
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