
1

1

Enterprise Software with Half-Duplex

Interoperations

Michael Johnson

Macquarie Unviversity, Sydney, Australia, mike@ics.mq.edu.au

Summary. In [3] the author and his colleague Dampney showed how a new solu-
tion to view update problems based on a category theory can be used to support
enterprise information system interoperation. We now have considerable experience
in applying that technique in industry. One of the major applications has been to
developing interoperations between large databases. The view update approach to
interoperations provides reasonable functionality while limiting the modifications
needed to implement it. However, for mathematical reasons the view update ap-
proach to interoperations requires a significant amount of attribute harmonisation
which means that companies must share data that they sometimes view as confiden-
tial. In testing this approach it has become apparent that, like full-duplex commu-
nications, it guarantees interoperations in both directions between the cooperating
databases. However, in the systems tested interoperations were frequently necessary
in one direction only for particular actions (inserts or deletes) on particular enti-
ties. This paper introduces a “half-duplex” approach to designing interoperations
between extant systems in which data flows both ways between the systems, but
on any action on any particular entity it will only flow one way. This significantly
extends the domain of application of the technique by avoiding the former need to
share information which some organisations insisted on keeping confidential.

1 Introduction

In 2001 Johnson and Rosebrugh introduced a new approach to view update
problems for formally specified databases [8]. Since then they and their col-
league Dampney have been studying the application of that approach in en-
terprise data models. Although new solutions to view update problems have
a range of applications, the main application has been to developing and sup-
porting interoperations for enterprise software, particularly for information
systems [9], [3].

The techniques that we use make major use of precise specification meth-
ods, specifically those based on category theory. We were originally motivated

⋆ Research partially supported by the Australian Research Council

4 Johnson

to develop such techniques for data models by a very large consultancy which
compelled us to use formal methods to manage the complexity. Our method-
ology has come to be called the sketch data model because it is based upon
the category theoretic notion of mixed sketch [1]. It has been developed con-
siderably and tested in other consultancies as well as being used to solve view
update problems and to support enterprise interoperations.

Typically, our approach to system interoperations requires the solution of
two view update problems — one for each system. The view update solutions
allow data derived from changes in one system to be reflected in a (category
theoretically) universal way in the other system. Two solutions provide for
two-way interoperability which we refer to as full-duplex.

In our experience in analysing actual systems we have found that the full
power of full-duplex interoperations is rarely necessary and that the modifi-
cations required for full-duplex interoperation can be challenging for business
reasons, in particular, because of the need or desire to maintain confiden-
tiality. In this paper we describe a new half-duplex methodology. In the new
methodology information system interoperation happens in both directions,
but data flow and update propagation occur in one direction at a time, with
the direction depending upon which entities are being updated and on the
nature of the update.

2 Sketch Data Models

The author’s approach to the view update problem is based on the Sketch
Data Model (SkDM), so to establish notation we briefly review the SkDM
here (we do not review standard category theoretic notions which can be
found in any introductory textbook on category theory).

In outline, an information system is specified in the SkDM by giving a
schema, IE. A schema is a graph, roughly corresponding to an ER graph, and
a set of (categorical) constraints. The constraints take three forms:

1. Commuting diagrams are pairs of paths in the graph with common origin
and destination.

2. Limit constraints specify that a certain node in the graph is to act as the
“limit” of a specified diagram in the graph.

3. Coproduct constraints specify that a certain node in the graph is to act
as the “coproduct” of specified nodes in the graph.

An example of a fragment of a schema graph is shown in Figure 1. In that
figure the diamond is required to be a pullback (a kind of limit constraint) and
that justifies the name of the node Invoices at Supplier S. The node labeled 1
is also a limit constraint and stands conventionally for the limit of the empty
diagram.

An information system, sometimes called a database state or instance,
is an assignment of, for every node in the schema a finite set, (the set of

Half-Duplex Interoperations 5

Cost Price
Invoices at
Supplier S

}}{{
{{

{{
{{

{{

$$JJJJJJJJJ

Supplier ID Stock Itemoo //

��

OO

Quality 1

S

##FF
FF

FF
FF

FF
F

Suppliers’
Invoices

yyrrrrrrrrrr

Sale Price Supplier ID

Fig. 1. A fragment of a Customer’s database schema

instances or values of that entity or attribute), and for every arrow in the
schema a function between the corresponding sets, (the relationships among
the entity instances, or the attribute values corresponding to the instances),
such that

1. The commuting diagrams do indeed commute as diagrams of correspond-
ing functions

2. The sets assigned to limit nodes are indeed the limits of the corresponding
specified diagrams of functions

3. The sets assigned to coproduct nodes are indeed coproducts (disjoint
unions) of the sets assigned to the corresponding specified nodes.

The Sketch Data Model has been used extensively in industrial work, and
the choice of constraints has been shown to be adequate to model a very wide
range of real-world constraints.

Each schema IE generates a classifying category Q(IE). Roughly speaking it
is the smallest category containing the schema, satisfying the constraints, and
closed under finite limits and finite coproducts. The classifying category has
important technical uses, and the objects of the classifying category Q(IE)
correspond to the structural queries that can be applied to an information
system with schema IE (and this is why the letter Q is used to denote the
passage to the classifying category).

Every category C, and so a fortiori every classifying category, has an un-
derlying schema UC. Its graph is the underlying graph of the category, and its
constraints are all of the constraints that happen to be true in the category:
all of the commuting diagrams, all of the limits, and all of the coproducts.
Frequently U is not explicitly mentioned, so if a category appears where a
schema is expected an application of U is understood.

A schema map between two schema is a graph morphism between the
corresponding graphs which maps each of the constraints on the first schema
graph to a constraint (already) specified in the second schema graph.

6 Johnson

Finally, a view of IE is a schema V and a schema map V : V // UQ(IE).
The schema V exhibits the view as an information system in the sketch data
model, while the map V specifies for each entity how to obtain its data as a
query on an information system based on IE. In the sequel we will as usual
suppress references to U .

For further details we refer the reader to [8].

3 Half-duplex interoperations

The need for half-duplex interoperation is most easily seen by considering
interoperating databases with a common entity v which has different sets of
attributes A, B, in the two databases. To use the full-duplex interoperation
techniques of [9] the databases need to be changed so that both of them
have as attributes of v the union of the attribute sets A ∪ B. This attribute

harmonisation is usually not difficult to achieve, but it has two negative results

1. The changes may be logically inappropriate for one of the databases since
they introduce attributes that do not logically belong in that particular
database

2. Especially in interoperations between businesses, it may happen that one
(or more) of the attributes to be added is in fact considered confidential
by the organisation which uses it. In extreme cases this can lead to limita-
tions on interoperation to preserve confidentiality, and even in those cases
where interoperation is obtained the negotiations to release confidential
information for attribute harmonisation can be very difficult.

Clearly if a notion of half-duplex interoperation can reduce the need for
attribute harmonisation it will facilitate the establishment of interoperation
among extant systems.

Attribute harmonisation is necessary for full-duplex interoperation because
in the sketch data model methodology interoperation depends upon finding a
common view and solving the view update problem for both systems. Further-
more, by [8] Proposition 14, the view update problem will not have a solution
at v unless the view has access to all of the attributes (A ∪ B) in which case
of course both systems must also have access to all of those attributes.

The author has analysed a range of circumstances in real data models
where attribute harmonisation was required. In a large majority of the cases I
discovered that attribute harmonisation could be avoided or reduced since, at
the particular entity in question, updates only ever took place in one direction,
say from a database with schema IE to a database with schema IE′.

Half-Duplex Interoperations 7

QIE

V

77ooooooooooooo

''NNNNNNNNNNNNN

QIE′

This means that changes of an entity v in the IE database will result in changes
of the view which will in turn require changes of the database with schema IE′.
Thus the view update problem needs to be solved for the view V // QIE′.
However, there is no need to solve the view update problem at v for the view
V // QIE, and attribute harmonisation can be significantly reduced. This
is the motivation for half-duplex interoperation. We will now provide a formal
definition of half-duplex interoperation.

Definition 1 A half-duplex interoperation between two information systems
with schemata IE0 and IE1 is a schema V together with schema maps V0 and
V1

QIE0

V

V0

77ooooooooooooo

V1 ''OOOOOOOOOOOOO

QIE1

such that for each object v in V, for each action (insert or delete), and for
each Vi, (i = 0, 1) either

1. the view update problem has been solved for that action along Vi at v, or
2. the administrator of the database with schema IE1−i has agreed to pro-

hibit that action on instances of V1−iv.

Notice that since V1−iv is an object of QIE1−i the prohibition may effect
several entities in the database with schema IE1−i.

4 Examples

A simple example which illustrates the methodology arises in standard co-
operation between a supplier S and a customer C. The supplier can see the
customer’s quantity of stock, but cannot change it. The customer on the other
hand adjusts the recorded stock levels as products are consumed or sold, and
as deliveries arrive. Similarly the customer can see his unpaid invoices as

8 Johnson

recorded on the supplier’s system, but he cannot modify those invoices. In-
stead the supplier inserts or deletes invoices as orders are dispatched to the
customer, or as payments are received. Thus the interoperations are half-
duplex with both insert and delete updates flowing from the customer to the
supplier for the stock entity, and from the supplier to the customer for the
invoice entity.

It is worth examining this example in more detail as it can illustrate a num-
ber of features of the methodology. To keep the example simple the schemata
will have few constraints and we will explore only very small fragments of the
full schemata.

Let IE0 be the schema for the customer information system. The fragment
we need to consider is shown in Figure 1. (More typically the schema would
not include the node Invoices at Supplier S which would occur automatically
in Q(IE0), but including it, along with the constraint that the diamond is a
pullback, will make no difference and saves us from remembering to apply Q.)

We assume that the Customer records in Stock Item each item of stock
along with its attributes Cost Price, Sale Price, Supplier ID and Quality. For
the purposes of this example we assume that the Customer has agreed to
share the Stock Item entity with Supplier S to aid in their cooperation by
having Supplier S anticipate Customer C’s needs and then offer appropriate
stock for possible purchase. However, Customer C does not intend to reveal
the suppliers of the stock items held (Supplier S and Supplier S’s competitors)
nor will the Customer reveal pricing and quality evaluation information.

A fragment of the Supplier’s classifying category is shown in Figure 2.
Once again the diamonds shown there are required to be pullbacks. This time
we will suppose that the schema IE1 does not include the nodes Stock at

Customer C and Invoices for Customer C. Rather we suppose that Figure 2 is a
fragment of Q(IE1) which necessarily includes both pullbacks. We also assume
that the Supplier has agreed to make Customer C’s invoices available to him
via the information system interoperations, but of course other customers’
invoices will not be visible. Nor will the Supplier reveal information about
credit status. Since we seek to encourage interoperations we have provided
the Supplier with the facility to store information about stock levels of any of
his customers, but we will only ensure interoperation with Customer C.

Now to the interoperations code. To establish interoperations between the
Customer and the Supplier we need to find a common view of the two in-
formation systems and then solve various view update problems. Finding the
common view is now straightforward, since we have in fact constructed the
pullbacks that are needed to form that view. We simply let V consist of two
nodes called Stock and Invoice. No edges are needed for V, nor are there any
constraints in V. The two schema morphisms V0 and V1 carry the two nodes
to Stock Item and Invoices at Supplier S and to Stock at Customer C and In-

voices for Customer C respectively. We will consider full-duplex and half-duplex
interoperations in turn.

Half-Duplex Interoperations 9

Stock at
Customer C

||yyy
yyy

yy
yy

%%LLLLLLLLLL

Invoices for
Customer C

||yyy
yy

yy
yyy

%%LLLLLLLLLL

1

C

""EE
EE

EE
EE

EE
EE

Customers’
Stock

yyrrrrrrrrrrrr

1

C

""EE
EE

EE
EE

EE
EE

Customers’
Invoices

yyrrrrrrrrrrrr

��

Customer ID Customer ID
Credit
Status

Fig. 2. A fragment of a Supplier’s classifying category

For full-duplex interoperations we need to solve both view update problems
(V0 and V1) at both entities of V. This is not possible unless V can “see” all
of the attributes of the entities that are to interoperate — this is where the
need for attribute harmonisation arises. In other words the Customer will
have to reveal his pricing, quality and stock item supplier information, and
the Supplier will have to reveal his credit status information. Fortunately
there is no need for the Customer to reveal his invoices from other suppliers,
nor for the Supplier to reveal his invoices or stock levels for other customers,
because the view update problem can be solved for pullbacks like these by
[8] Proposition 15. Nevertheless, the need to reveal confidential information
is daunting.

Now for half-duplex interoperations. Since the Customer is the only actor
who can adjust stock levels we only need to solve the view update problem
for V1 at the entity Stock. But once again, [8] Proposition 15 applies, and this
time we don’t have to reveal any confidential information. Similarly inserts
and deletes of invoices can only be carried out by the Supplier, so at the Invoice

entity we need only solve the view update problem for V0, and as before it
can be solved without revealing confidential information. There is no need for
attribute harmonisation in our example.

It should perhaps be noted that this is not a contrived example. When,
as often happens, interoperations are one-way for particular entities there is
usually relatively little need for attribute harmonisation.

We noted above that the customer-supplier interoperations are half-duplex
with both insert and delete updates flowing from the customer to the supplier
for the stock entity, and from the supplier to the customer for the invoice
entity. There are also examples in which the half-duplex interoperations occur
in different directions for the same entity depending on whether the operation
is an insert or a delete. By way of example consider a courier operation in
which Dispatch and Delivery are carried out by two different companies —
the Dispatch company interacts with the customer, collects from them the

10 Johnson

goods, and charges them for the service, and then pays the Delivery company
to carry out the delivery. If the Dispatch and Delivery companies wish to
have interoperating information systems they will each presumably have an
entity corresponding to Package in Transit, and only the Dispatch company will
carry out inserts on that entity, while only the Delivery company will carry out
deletes on that entity. (This is a fairly typical situation for an operation where
instances of entities are processed in sequence by the different organisations,
for example in a production process, or where there is a notion of Check-in

and Check-out carried out by the two different organisations.)
Because it is generally easy to solve delete view update problems ([8]) the

Dispatch company can keep many attributes of Package in Transit without
needing to reveal them for half-duplex interoperability (although they would
need to be revealed for full-duplex interoperability). On the other hand, for
interoperation to work, even for half-duplex interoperation, the Delivery com-
pany’s attributes of Package in Transit will need to be available to the view
V. Fortunately in the range of activities involving production or check-in
and check-out it is usually the case that confidential information (credit card
numbers, payment details, customer relationship details etc) is recorded at
check-in, so again there is rarely need for serious attribute harmonisation.

5 Current work

Recent work [10] has suggested a new and very promising approach for elim-
inating altogether the need for attribute harmonisation in many cases.

The paper [10] explores three approaches to the use of the sketch data
model to formally specify databases where partial information, for example
null values on attributes, is permitted. What is referred to in that paper
as “the second approach” was intended to support attribute harmonisation,
but turned out to contain significant technical complications. The other two
approaches, the first, and the third, were found to be in most respects equiv-
alent.

Recently the author has been exploring the interaction between those two
approaches and the techniques for full-duplex and half-duplex interoperations.
To my surprise the formal theory of view updates [8] applies seamlessly to
the third approach, but not at all to the first approach. The essence of the
difference is as follows.

In the first approach, an attribute which is optional (in the sense that
entities may be associated with a null value for that attribute) is extended
at specification time by the addition of a special value in the sense of Date
[4]. Unfortunately, modifications of the special value, perhaps replacing it
by a normal value, are not qualitatively different from other attribute value
changes. In particular, the universal condition which must be satisfied by view
updates is not tested against states in which a null value is replaced by an
actual value.

Half-Duplex Interoperations 11

In the third approach, an attribute which is optional is only defined for
an explicitly specified subobject. (In [10] we assumed that the subobject of
defined values is complemented but here we will not make that assumption.)
In this case recording a normal value for a currently null attribute value for a
particular entity amounts to adding a new entity to the subobject along with
the actual attribute value associated with that entity. Thus the instantiation
of null values by normal attribute values is tested as part of the universal
condition of view updates.

As a result of this difference, if the third approach is used to specify possi-
bly partial attributes, then states which have null values have state morphisms
to states in which one or more of the null values are instantiated with normal
values. Thus the universal property of insert updates will be satisfied by states
which are null at all permissible attributes that do not have values defined in
the original model, nor in the update. This in turn means that in many cases
the need to share attributes to obtain solutions to view update problems, and
hence to obtain interoperation, can be relaxed.

Of course, in a database which does not support partial information we
cannot use these new ideas. Our current study of such systems suggests that
the half-duplex interoperation methodology does

6 Related work

The use of sketches in data modeling is becoming more widespread. For ex-
ample Piessens [13], [14] developed a notion of data specification including
sketches. He has since obtained results on the algorithmic determination of
equivalences of model categories [15]. This Morita theory was intended to
support plans for view integration. Diskin and Kadish have used sketches to
support category theoretic conceptual modeling in several papers including
[5]. Others, including Lippe and ter Hofstede [11], Islam and Phoa [7], and
Baclawski et al [2], have used category theory to support data modeling. Rose-
brugh et al [6] have developed databases to store finitely presented categories.

Meanwhile, there has been a renewed interest in view updates. Menon et
al [12] have used view updating to analyse system inconsistency, and in recent
lectures at the Newton Institute Benjamin Pierce has revisited the theory of
views.

To the author’s knowledge, the notion of half-duplex interoperation and
its corresponding partial solutions to view update problems, together with
their use in supporting interoperation, is new. He first proposed it in a lecture
at Advances in Concurrent Engineering, in 2001, and now that he has accu-
mulated experience in searching for instances of half-duplex interoperation in
enterprise applications he is convinced that it is worth developing further.

The proposal to avoid attribute harmonisation altogether, in cases where
partial information is supported, is new and relatively unexplored to date.

12 Johnson

References

1. M. Barr and C. Wells. Category theory for computing science. Prentice-Hall,
second edition, 1995.

2. K. Baclawski, D. Dimovici and W. White. A categorical approach to database
semantics. Mathematical Structures in Computer Science, 4:147–183, 1994.

3. C.N.G Dampney and Michael Johnson. Enterprise Information Systems: Speci-
fying the links among project data models using category theory. In Enterprise

Information Systems III, Eds J. Filipe, B. Sharp, and P. Miranda, 191–197,
Kluwer, 2002.

4. C. J. Date. Introduction to Database Systems. Addison-Wesley, eighth edition,
2004.

5. Zinovy Diskin and Boris Kadish. Variable set semantics for keyed generalized
sketches: formal semantics for object identity and abstract syntax for conceptual
modeling. Data and Knowledge Engineering, 47:1–59, 2003.

6. M. Fleming, R. Gunther and Robert Rosebrugh. A database of categories. Jour-

nal of Symbolic Computation, 35:127-135, 2003.
7. A. Islam and W. Phoa. Categorical models of relational databases I: Fibrational

formulation, schema integration. Proceedings of the TACS94. Eds M. Hagiya
and J. C. Mitchell. Lecture Notes in Computer Science, 789:618–641, 1994.

8. Michael Johnson and Robert Rosebrugh. View updatability based on the models
of a formal specification. Formal Methods Europe (FME01). Eds J. Fiadeiro
and P. Zave. Springer Lecture Notes in Computer Science, 2021:534–549, 2001.

9. Michael Johnson and Robert Rosebrugh. Database interoperability through
state based logical data independence. International Journal of Computer Ap-

plications in Technology, 16:97–102, 2003.
10. Michael Johnson and Robert Rosebrugh. Three approaches to partiality in the

sketch data model. Electronic Notes in Theoretical Computer Science, 78:1–18,
2003.

11. E. Lippe and A ter Hofstede. A category theoretical approach to conceptual
data modelling. RAIRO Theoretical Informatics and Applications, 30:31–79,
1996.

12. Catherine Menon, Michael Johnson and Charles Lakos. Inconsistency manage-
ment and view updates. ENTCS, 141:27–51, 2005.

13. F. Piessens. Semantic data specifications: an analysis based on a categorical

formulation. PhD thesis, Katholieke Universiteit Leuven, 1996.
14. F. Piessens and Eric Steegmans. Categorical data specifications. Theory and

Applications of Categories, 1:156–173, 1995.
15. F. Piessens and Eric Steegmans. Selective Attribute Elimination for Categorical

Data Specifications. Proceedings of the 6th International AMAST. Ed. Michael
Johnson. Lecture Notes in Computer Science, 1349:424-436, 1997.

