
Implementing a Categorical Information System�

Michael Johnson1 and Robert Rosebrugh2

1 Department of Computer Science
Macquarie University
mike@ics.mq.edu.au

2 Department of Mathematics and Computer Science
Mount Allison University

rrosebrugh@mta.ca

Abstract. The authors have proposed using category-theoretic sketches
to enhance database design and integration methodologies. The algebraic
context is called the Sketch Data Model (SkDM) and mathematically de-
scribes databases, views and their updates, and other database concepts.
The system described here is a freely available graphical Java environ-
ment with a module that compiles a design incorporating algebraically
specified constraints into database schemas that interface directly with
modern database management systems. It therefore supports, inter alia,
rapid prototyping.

Keywords: Semantic data model, category theory, graphical database
design.

1 Introduction

Although the database management systems (DBMS) in wide use for the past
dozen years have all been “relational”, the most popular design method remains
the Entity-Relationship-Attribute (ERA) diagram. That this is so is not surpris-
ing given that the latter is a natural and simply understood graphical paradigm.
Despite this design-implementation disconnect, there are straightforward proce-
dures and a variety of both commercial and freely available software applications
that allow creation and manipulation of ERA diagrams and then translate these
designs into relational database schemas. See [8] for some examples.

The system described here similarly implements the database design concepts
of the Sketch Data Model (SkDM) [4] which is based on categorical universal alge-
bra. The SkDM extends both the entity-relationship model [1] and the functional
data model of Shipman [6]. Entities and attributes are modeled using a simple
graphical language. Relationships among entities are expressed, and may also be
constrained, using concepts from category theory. SkDM constraints can express,
among other things, the selection, projection, join and (disjoint) union operations
of relational algebra. Formally, these ideas are expressed using a special case of
� Research partially supported by grants from the Australian Research Council and

NSERC Canada.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 232–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementing a Categorical Information System 233

the class of categorical theories called sketches. The particular sketches we use
are called Entity-Attribute (EA) sketches and are described below.

For the Sketch Data Model, our EASIK system supports graphical definition
and manipulation of EA-sketches and automatic compilation into SQL database
schemas. It is capable of graphically specifying EA sketches, storing their de-
scription in XML documents and generating relational (SQL) database schemas
that implement the SkDM designs, including constraints.

EASIK is the first system that supports SkDM modelling. It produces an SQL
database schema which can be loaded into a DBMS. Furthermore the resulting
database will enforce the SkDM constraints. Having such a system is crucial to
validating the SkDM project. The current system has two main modules. The
first module is a graphical engine that allows point-and-click construction and
manipulation of an EA sketch. From the graphically presented EA sketch the
system generates an XML document that encodes the sketch, including con-
straints. The second module compiles a design stored as an XML document to
an SQL database schema that implements the design. The SkDM has been the
subject of extensive theoretical studies by the authors and collaborators, for ex-
ample [3,4,5]. M. Johnson and C. N. G. Dampney have been engaged for several
industrial consultancies using the SkDM [2].

2 An Example

Before describing the EASIK implementation, we provide a short tour of the
sketch data model with the aid of an EASIK screen. Many other examples can
be found in [4] and papers cited there, including the case-studies and consul-
tancies. We assume familiarity with standard data modeling concepts such as
ERA diagrams and relational database schemas and algebra. Some familiarity
with the basic language of categories applied to Computer Science (for example
in [7]) will be helpful.

A conference program committee might use a database with information on
its own members, authors, articles submitted, and their status. Among the rules
we assume are the following: a person in the database is an author or committee
member (not both); there is an assignment of a single committee member as
first reader for each paper; papers may have several authors and vice versa; for
accepted papers one or more of the authors is recorded as a presenter.

AnEAsketchhas fourcomponentswhichweoutline foradatabaseschematosup-
port the program committee example. For a formal definition of EA sketch see [5].

The first component is a directed graph G, like that in Figure 1. We note
some similarities with an Entity-Relationship diagram that might describe the
same application domain, and some important differences.

Nodes of G represent entities, but there are no “relationship” nodes. The au-
thorship entity allows several authors to be among the “authorship” of a paper
and one author to have authorship of several papers. In an ER diagram author-
ship might be a relationship from author to paper. Here that is expressed by the

234 M. Johnson and R. Rosebrugh

Fig. 1. EASIK screen for part of a Program Committee database

directed edges from authorship. Instead of being modeled as a relationship set in
the ER fashion, authorship is also modeled as an entity set. Thus, the directed
edges from authorship are modeled by functions specifying for each authorship
who is the author and which paper they wrote. The is a relationships are denoted
here by edges indicated � �� . The other directed edges in G, for example that
from paper to commMbr, are modeled by functions (and can be thought of as
methods or, from the database perspective, as integrity constraints). Given an
instance of their source type they return an instance of their target type.

The other three components of an EA sketch do not appear in ER diagrams
and they express database constraints. In EASIK they are indicated graphically.

The second component is a set of commutative diagrams. A commutative di-
agram is a pair of paths in G with common source and target. They are used to
specify equality of function constraints. In our example, the two paths from pre-
senter to paper are a commuting diagram. This represents a real-world constraint:
Each presenter instance has an authorship of a paper and each presenter instance
has an acceptedPaper which is the same paper. On the screen, this diamond of
edges encloses a CD icon for which the details are also found among constraints in
the right panel of the screen. In contrast, the two paths from authorship to person
(around the parallelogram) do not form a commutative diagram.

The last two components of an EA sketch express database constraints graph-
ically. They require a node of G to have a value in a database state that depends
on values of other nodes in the state.

The third component of an EA sketch is a set of finite cones in G. For details
of their syntax and semantics we refer the reader to [4] or [5], but we do note
here that is a edges are expressible using finite cones.

The fourth component of an EA sketch is a set of finite discrete (or sum)
cocones. A discrete cocone has a single vertex node, a set of base nodes a path

Implementing a Categorical Information System 235

to the vertex node from each base node. In Figure 1 there is a discrete cocone
with vertex person. Its base vertices are commMbr and author. The links to the
vertex from the base nodes are the is a edges. On the screen, these nodes link
with a + icon for which the details are also found in the right panel of the
screen. This cocone expresses that (the elements of the entity set) person are
exactly the disjoint union (sum) of (the elements of the entity sets) commMbr,
and author. Note that we thus enforce the constraint that committee members
are not allowed to be authors.

We do not show most of the attributes—the “A” in EA—in the screen graph
of Figure 1, but they are definitely a part of the EA sketch. Attributes are (often
large) fixed value sets. Examples in this case are the name of a person, the title
of a paper, the year-joined of a committee member, and so on. On the right panel
attributes and their data-types are listed with their entity. They may optionally
be shown on screen UML style, as we do for paper. Formally an attribute is the
vertex of a sum cocone whose linking paths are called elements. In every state
of the database, an attribute’s value is exactly the disjoint union of its elements.

The theory of the sketch data model considers categories of models of EA
sketches. A model is prescribed by value sets for entities and attributes and
functions among them prescribed by the edges of G which satisfy the constraints.
Our interest is instead to translate the sketch into an SQL database schema which
maintains the constraints on entity sets prescribed by the sketch.

3 Implementation of the SkDM with EASIK

We begin the description of our implementation with some of the design desider-
ata for EASIK:

The graphical front end is written in Java for portability. All user input
is gathered through the GUI environment. Saved files are XML documents.
EASIK supports the database design and then handles the generation of an
SQL database schema. Access to the database schema and data manipulation
(input and queries) is via a user selected database management system. (Thus,
database implementation requires an ambient DBMS; export of the SQL schema
as text is also available.) Entities have a system-generated primary key. Keys are
definable within the sketch and are in the exported SQL schema. Attributes must
be based on data types for the platform specified by the user and are specified in
an understandable format without adding clutter. Commutative diagrams and
other constraints are representable graphically and exported as triggers and pro-
cedures to the SQL schema. The user may select a path of edges of any length
to create constraints. The user may add, delete, edit and rename all sketch ele-
ments. Database schema export is accomplished automatically and includes all
information about constraints, primary and foreign keys. Drivers for interactions
with database platforms are included.

These design criteria are met by the application which is available for down-
load from http://mathcs.mta.ca/research/rosebrugh/Easik/. EASIK uses
the graph display package JGraph and translates between XML and Java via

236 M. Johnson and R. Rosebrugh

SAX. The Java source code and a Java archive (jar) file (including a Help sys-
tem) are available, as is extensive documentation and several examples.

EASIK opens with a graphical canvas with functionality for the creation of
entities (nodes), attributes and edges joining entities. EA sketch constraints from
several classes may be specified using the graphical interface. The components of
the sketch are accessible from a text panel. A stored EA sketch may be loaded.
The EA sketch information (entities, edges, attributes and constraints) in the
graphical display can be edited on screen.

The displayed sketch may be saved to an XML document that encodes enti-
ties, attributes, edges and all of the constraints plus the current graphical display.
The XML code follows a schema written in XSD. Fragments of XML code for
the above example follow:

<entities>
<entity name="paper" x="365" y="228">
<attribute attributeType="VarChar(255)" name="Title"/> ...
<edges>
<edge id="of" inj="false" source="authorship" target="paper"/> ...
<commutativediagram isVisible="true" x="373" y="126">
<pathref id="among;of"/>
<pathref id="of 1;isA 3"/>...

Generation of data description language (SQL code) for a database schema
from an EA sketch uses its stored XML document. The generation procedure
begins by creating a table for each entity with keys derived from the graph of
the EA sketch. A column of its entity table is created for each attribute. Each
edge is encoded as a foreign key created for its source entity table on the primary
key of its target entity table. The point is that, for any tuple in a source table
(entity set) its value under the function implementing the edge is specified in the
target table (entity set). The is a (injective) edges also use UNIQUE. An example
of generated SQL code follows. Note the attribute Title and the foreign key for
reader.

CREATE TABLE paper (paper id INTEGER AUTO INCREMENT ,
Title VARCHAR(255), commMbr id INTEGER NOT NULL ,
FOREIGN KEY (commMbr id) REFERENCES commMbr (commMbr id) ,
ON UPDATE CASCADE ON DELETE CASCADE ,
PRIMARY KEY (paper id));

Cascading updates and deletes for the foreign key is a design decision entailed
by automatic generation.

The constraints of the EA sketch are coded as triggers and stored procedures.
For example, inserting a tuple in the domain table of a commutative diagram
invokes a trigger to enforce the requirement that the values the foreign keys
used to express the participating edges do match after following the two paths

Implementing a Categorical Information System 237

in the commutative diagram. In the example following, the stored procedure
ProgCttee commDiag0 is called to traverse the paths involved.

CREATE TRIGGER presenterAInsertTrig AFTER INSERT ON presenter
FOR EACH ROW BEGIN call ProgCttee commDiag0(NEW.presenter id); END

The stored procedure is fairly routine imperative code.

4 Conclusions

The challenging problem solved by this early version of EASIK is automatic com-
pilation into SQL data definition language in a way that enforces the constraints
of an EA sketch. Thus its powerful constraint definition facility is available to
users via a simply understood graphical data model design tool. EASIK is the
first system to do this. Furthermore EASIK will support the development of
large systems using the SkDM approach. Such software support is vital with the
large applications common in industrial practice. The system described has some
limitations. Only a single EA sketch window may be opened. Limit cones are cur-
rently required to be one of two (very common) types. Testing with commercial
DBMS has been limited. Future versions will address these issues.

Database theory has worked within its own Relational Algebra for many years,
but enhancing the theory with categorical universal algebra is a more recent
development. The system described here provides a positive link between theory
(the algebraic methodology, SkDM) and practice (the software technology of
database management systems).

References

1. Chen, P.P.S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Trans. Database Syst. 2, 9–36 (1976)

2. Dampney, C.N.G., Johnson, M.: Experience in developing interoperations among
legacy information systems using partial reverse engineering. In: Proceedings of the
IEEE International Conference on Software Maintenance, pp. 269–272 (2003)

3. Johnson, M., Rosebrugh, R.: Sketch data models, relational schema and data speci-
fications. In: Proceedings of CATS 2002. Electronic Notes in Theoretical Computer
Science, vol. 61(6), pp. 1–13 (2002)

4. Johnson, M., Rosebrugh, R.: Fibrations and universal view updatability. Theoretical
Computer Science 388, 109–129 (2007)

5. Johnson, M., Rosebrugh, R.: Constant complements, reversibility and universal view
updates. In: AMAST (to appear, 2008)

6. Shipman, D.: The functional data model and the data language DAPLEX. ACM
Trans. Database Syst. 6, 140–173 (1981)

7. Walters, R.F.C.: Categories and Computer Science. Cambridge University Press,
Cambridge (1991)

8. http://en.wikipedia.org/wiki/Entity-relationship (accessed on May 6, 2008)

http://en.wikipedia.org/wiki/Entity-relationship

	Implementing a Categorical Information System
	Introduction
	An Example
	Implementation of the SkDM with EASIK
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

