
Algebras and Update Strategies

For Derick Wood on his 70’th birthday

Michael Johnson
(Macquarie University, Australia

mike@ics.mq.edu.oz)

Robert Rosebrugh
(Mount Allison University, Canada

rrosebrugh@mta.ca)

RJ Wood
(Dalhousie University, Canada

rjwood@mathstat.dal.ca)

Abstract: The classical (Bancilhon-Spyratos) correspondence between view update
translations and views with a constant complement reappears more generally as the
correspondence between update strategies and meet complements in the order based
setting of S. Hegner. We show that these two theories of database view updatability
are linked by the notion of “lens” which is an algebra for a monad. We generalize
lenses from the category of sets to consider them in categories with finite products, in
particular the category of ordered sets.

Key Words: algebra, lens, update strategy

Category: E.1; H.1, H.2

1 Introduction

This article links two theories of database view updatability. The first is that of
Bancilhon and Spyratos [1], and the second is that of S. Hegner [8]. The link is
the notion called “lens” studied by B. Pierce and co-authors [4].

Given a database definition (for example by a set of DDL statements in SQL),
the database states S are the valid ways of populating the database objects (for
example the tables). A view definition specifies a way of assigning view states V
to database states, so it is at least a mapping from S to V . An update u is often
considered to be an endomorphism of states. In this generality, the view update
problem is the following:

given a view S
g // V and an update V u // V of the view states, when

is there a compatible update (known as a translation) S
tu // S of the

database states?

For tu to be a translation means that gtu = ug, that is, the following diagram
commutes (as noted even in [1]):

V V
u

//

S

V

g

��

S S
tu // S

V

g

��

Notice that we have not said what sort of structure, if any, the database
states S should have. There are several structures for database states and view
states that have been considered in the literature on the view update problem.
Moreover, the problem has usually been addressed for a specified set of view
updates.

In the early 1980’s, the influential article of Bancilhon and Spyratos modeled
database states as an arbitrary unstructured set S and view states as an arbitrary
unstructured set V . For them a view definition is simply a (surjective) function

S
g // V . Their criterion for the existence of a translator for a set U of view

updates is the existence of a so-called “complement” view S
f // C. In short,

the idea is that the view and its complement form a lossless decomposition of

database states, expressed by the injectivity of S
〈g,f〉 // V × C. Then updates

to a view can be made leaving the database state unchanged (constant) on the
complement. Hence the name “constant complement” updating strategy.

The more recent work of S. Hegner [8] studies the view update problem when
the database states and the view states are arbitrary partially ordered sets and
the view definition is a(n open) surjective monotone function. Hegner also con-
siders complements, and shows that they correspond to mappings he calls update
strategies which are related to the lenses we will soon consider.

We note that we have argued [10] (and so have several others [5], [12], [18],
[19]) that the database states should be structured as a category of models for a
sketch. The consequences of that approach for view updates have been considered
elsewhere [11]. The model categories arising are often ordered sets, although not
arbitrary, so the cited approach has something in common with that of Hegner.

In the context of studying their theory of “bi-directional programming”,
Pierce and co-authors were led to study the notion of lens [4], [6], defined equa-
tionally below. They showed that lenses in the category of sets correspond to
database view updatability in the sense of Bancilhon and Spyratos, and more
generally to the work of Gottlob et al. [7].

At about the same time as Pierce et al. noticed the relationship of lenses and
constant complement update strategies, Hegner wrote about “update strategies”
for a “closed family of updates”. Hegner’s definition of update strategy includes
being a lens in the sense appropriate to the category of partially ordered sets.

The lens equations were first considered (as far as we know) in the early 1980’s
by F. Oles [14], [15] in a study of abstract models of storage. Oles (as reported
in [13]) also characterized models of the equations in sets as projections. In the
1990’s M. Hoffman and B. Pierce [9] considered the lens equations in their study
of typing for programming languages.

Our contribution is to consider the lens equations in suitable generality. As we
see below, the equations make sense in a category with products. We show that
viewing lenses as algebras provides the claimed link from the work of Bancilhon
and Spyratos to that of Hegner.

In Section 2 we review the needed category theory. In Section 3 we consider
the monad ∆Σ on a slice of a category with products and characterize its alge-
bras. In Section 4 we see the data for a (totally defined) lens in sets is the same as
an algebra for ∆Σ, and that Oles’ characterization has a meaning for database
updating strategies. Section 5 considers the model of Hegner, and shows that his
update strategies are lenses in the category of ordered sets.

Acknowledgement. The second and third authors were undergraduate stu-
dents when Derick Wood came to McMaster University in 1970. We both learned
about formal language and automata theory from him. Derick was the M.Sc.
supervisor of the second author, and he imparted both an abiding interest in
theoretical Computer Science and the unforgettable lesson that research is fun.

2 Review of monads

We assume the reader is familiar with the most basic ideas from category the-
ory, including functor, natural transformation and isomorphism, and (co)limits
found in, for example Barr–Wells [2] or Pierce [16]. Categories will be denoted
A,B,C, . . ., functors F,G,H, . . . and natural transformations α, β, γ, We
assume all of our categories are locally small, so that there is a set of arrows
between any two objects, denoted A(C,C ′). We review some other definitions
and results needed in the sequel.

Perhaps the most important concept from category theory is the following.

Definition 1. Let A and B be categories, and F : A // B and G : B // A
be functors. Then F is left adjoint to G (also G is right adjoint to F , the pair
F,G are adjoint) if for any objects A in A and B in B there is a bijection
B(FA,B) ∼= A(A,GB) which is natural in A and B. We will depict this by:

A Bhh

G

A B

F

((⊥

and write F a G and call the relationship an adjunction.

Following identity arrows through the bijections mentioned determines nat-
ural transformations η : 1A

//GF and ε : FG //1B called the unit and counit.
They satisfy the so-called triangular identities and, furthermore, a pair of nat-
ural transformations satisfying these identities determines an adjunction. For
details see [2].

Example 1. A standard example of adjunction is provided by diagonal functors
and (co)products. Let A be a category. For the case of binary products, denote
the functor whose value on A in A is the pair of objects (A,A) by∆ : A //A×A.
A right adjoint to ∆ is a product functor, denoted −×− : A×A // A. Indeed,
D × E is the product of objects D and E of A exactly when, for any object A,
there a bijection from pairs of arrows A //D,A //E to arrows A //D ×E.
Notice that the identity arrow on D×E then corresponds under the counit to a
pair of arrows denoted generically as π0 : D × E //D,π1 : D × E // E called
the projections. The pair of identity arrows from A to A corresponds under the

unit to an arrow denoted A
δA // A × A. A coproduct functor is a left adjoint

to ∆. �

As we will review below, adjunctions generate examples of the next concept,
and vice versa.

Definition 2. Let A be a category. A monad T on A is a triple T = (T, η, µ)
where T : A // A is a functor, η : 1A

// T and µ : T 2 // T are natural
transformations and they satisfy the unitary and associative equations:

µ(ηT) = 1T = µ(Tη) µ(µT) = µ(Tµ)

Example 2. A familiar monad on the category set of sets is the free monoid
monad. For a set X, let TX = X∗, the free monoid on X. T extends easily to
a functor on set. The inclusion of generators (single letters) provides a function
ηX : X // TX. Since T 2X = (X∗)∗ is “words of words”, we can define µX :
T 2X // TX to be the function which simply “multiplies out” and provides a
word. The equations are easily seen to be satisfied. �

Example 3. Let F : A // B and G : B // A be functors and F a G. The
functor GF underlies a monad TGF = (GF, ηGF , µGF) where ηGF is the unit for
the adjunction and µGF = GεF : GFGF //GF . �

Definition 3. Let T = (T, η, µ) be a monad on a category A. An algebra for
T is a pair X = (X, ξ) where ξ : TX // X is an arrow of A satisfying the
equations:

unit law: ξ(ηX) = 1TX associative law: ξ(µX) = ξ(Tξ)

A morphism of algebras from X = (X, ξ) to Y = (Y, ζ) is an arrow f : X // Y
in A satisfying fξ = ζTf .

The algebras for a monad form a category denoted AT with composition
inherited from A. As is common practice, when the unit and multiplication for
a monad are clear, as in Example 3 for example, we often just name a monad T

by its functor part T , and refer to T algebras and so on.

Example 4. An algebra for the free monoid monad is a monoid in the category
set. The category of algebras is the category of monoids and their homomor-
phisms. �

Adjoints, monads and their algebras are related by the following well-known
results:

Theorem 4. Let T be a monad on A. There are functors FT : A // AT and
GT : AT // A defined by GT(X, ξ) = X, FTX = (TX, µX) and satisfying
FT a GT. Let F : A // B and G : B // A be functors with F a G and
suppose T = TGF . Then there is a comparison functor K : B // AT defined by
KB = (GB,GεGB). Moreover, KF = FT and GTK = G.

The next diagram sums up the situation

B ATGFK //B

A

G

��

B

A

UU

F

a

A

ATGF

uu
GT

A

ATGF

FT

77

a

There are criteria which ensure that the comparison functor K is an isomor-
phism or equivalence of categories, namely the celebrated monadicity theorems
of J. M. Beck. We review one of those below.

Definition 5. Let G be a functor B G // A with a left adjoint F . Then G

is called monadic if the comparison functor B K // ATGF is an equivalence of
categories.

Before stating Beck’s theorem we review some standard terminology. A func-
tor G reflects isomorphisms if f is an isomorphism whenever Gf is so. A con-
tractible coequalizer is a diagram of arrows:

A B
f

** BA tooA B
g

44 B C
h

// CB
s

tt

satisfying ft = 1B , gt = sh, hs = 1C and hf = hg. A pair of arrows A
f //
g

//B is

a G-contractible coequalizer pair if it becomes part of a contractible coequalizer
after application of G.

Theorem 6. Let B G // A be a functor. Then G is monadic (in the stronger
sense that K is an isomorphism) if and only if G has a left adjoint; G reflects
isomorphisms; and B has coequalizers of G-contractible coequalizer pairs which
G preserves.

When we use this theorem it will be the case that B has all coequalizers and
the functor G preserves them. For more details we refer the reader to [3].

3 T∆Σ algebras

In this section we consider algebras for a monad that is the basis of our descrip-
tion of lenses in the sequel. The monad uses a well-known construction: Let C
be a category. For any object V of C the slice category C/V is constructed as
follows. An object is an arrow g : C //V to V . An arrow from g to g′ : C ′ //V
is an arrow f : C // C ′ satisfying g′f = g, so arrows are the same thing as
commutative triangles ending at V . There is always a functor ΣV : C/V // C
defined on objects by ΣV g = C and on arrows by ΣV f = f .

Example 5. Now let C be a category with finite products. There is a functor
∆V : C //C/V (not the ∆ of Example 1) that is defined on objects by ∆V C =

V × C π0 // V and on arrows by ∆V f = 1V × f . We will usually drop the V

subscripts. Note that for an object C
g // V , ∆Σg = V × C π0 // V . There is

an adjunction:

C/V Cii
∆

C/V C

Σ

((⊥

The g’th component of the unit η for the adjunction is g
ηg //∆Σg as in the

commutative triangle:

C V × C
〈g,1〉 //C

V

g
""EEEEEEEEEE V × C

V

π0

��

The adjunction determines the monad T∆Σ on C/V . The unit for the monad is
η while the g’th component of its multiplication is

∆Σ∆Σg
µg //∆Σg

as in:

V × C × C

V

π0
""EEEEEEEEEEV × C × C V × C
〈π0,π2〉 // V × C

V

π0
||yyyyyyyyyy

�

The following characterization of ∆Σ algebras is useful for the sequel. We
will abbreviate 〈π0, π2〉 to π0,2.

Proposition 7. Let C be a category with finite products. An algebra structure
on g : C // V in C/V for the monad ∆Σ on C/V is an arrow p : V ×C //C
satisfying:

i) gp = π0

ii) p〈g, 1C〉 = 1C

iii) p(1V × p) = pπ0,2

Proof. As the commutativity of the diagram below illustrates, the equation i)
shows that, viewed as a morphism from ∆Σg to g, p is indeed a morphism of
C/V , while the equation ii) shows that p satisfies the unit law for the monad
∆Σ.

C V × C
〈g,1〉 //C

V

g
""EEEEEEEEEE V × C

V

π0

��

V × C C
p //V × C

V
��

C

V

g
||yyyyyyyyyy

C C

1C

$$

In the next diagram, the unlabelled vertical arrows are projections, so the whole
diagram makes a commutative square in C/V . Since∆Σp = 1V ×p and µg = π0,2

the equation iii) (the top square) shows that p is associative.

V × C C//

V × V × C

V × C

π0,2

��

V × V × C V × C
1V ×p // V × C

C

p

��
V × C

V
��;;;;;;;V × C C
p // C

V

g
����������

V × V × C

V
��---------------V × V × C V × C// V × C

V
�����������������

ut

In the sequel it will be important to know when ∆ is monadic.

4 Lenses and update translations

In this section we consider the notion of lens (in set) defined by Pierce and co-
authors[4], [6], [17]. The context is their study of “bi-directional programming”.

As they point out, the lens equations also appear in the programming language
literature, both in Oles category of “state shapes” [14] and in Hofmann and
Pierce’s work on “positive subtyping”[9].

As we will see shortly, the data for and the equations satisfied by a very
well behaved lens in [4] determine an algebra for the monad ∆VΣV on the
category set. It is our basic observation that ∆V is usually monadic. Thus, a
∆VΣV algebra for set/V , equivalently a very well behaved lens, is specified by
an object of the domain of the monadic ∆V , that is, a set. The set in question
determines a view complement as studied by Bancilhon and Spyratos.

Briefly, a lens in set involves two mappings, “Get” and “Put”, and equa-
tions. In the interpretation for databases, the Get mapping determines a view
state from a database state. The Put (or “Putback”) mapping determines a new
database state s′ from pair (v, s) of a database state and a view state. The idea
is the following: If some update u of the Get of the database state s results in the
view state v, then the Put of the pair (v, s) is the new database state s′. The Get
of this new database state must be the view state v (equation PutGet below).
Moreover, if the update u is trivial, the Put of (v, s) is just the projection on s

(equation GetPut below).

Definition 8. A lens in set [4] is L = (S, V, g, p) where S and V are sets (the

states and the view states); g is a mapping S
g // V (the “Get” mapping); p is

a mapping V × S
p // S (the “Put” mapping). A lens is called well behaved if it

satisfies:

(i) (PutGet) the Get of a Put is the projection: g(p(v, s)) = v

(ii) (GetPut) the Put for a trivially updated state is trivial: p(g(s), s) = s

Diagrammatically:

S

V × S
〈g,1〉

��7777777S S
1 // S

V × S

CC

p

�������
V × S

V

π0
��7777777V × S S
p // S

V

g

���������

GetPut PutGet

A well behaved lens is called very well behaved if it satisfies:

(iii) (PutPut) composing Puts depends only on the second view state:
p(v′, p(v, s)) = p(v′, s)

Diagrammatically:

V × S V
p

//

V × V × S

V × S

π0,2

��

V × V × S V × S
1V ×p // V × S

V

p

��

PutPut

Example 6. We illustrate that a lens as just defined may fail to be well behaved.
The example is from [4].

Suppose that a relational database schema has two signatures, R(A,B) and
S(B.C) (we ignore type information for A,B,C). The view database schema has
just one signature T (A,B,C). The set S of database states is the set of pairs
R,S of tables with column headings from the signatures, and similarly the set
V of view states is the set of tables T. The action of the Get mapping on a
database state R,S is to determine the view state (table) T which is the natural
join of R,S. For example, with R and S as follows, we get T as shown:

R A B

a1 b1
a1 b2

S B C

b1 c1
b1 c2

 7−→


T A B C

a1 b1 c1
a1 b1 c2


The Put mapping on a pair consisting of a view state T and a database state
R,S provides a new state R′,S′ by simply projecting T onto A,B and B,C

respectively. For the example above:
T A B C

a1 b1 c1
a1 b1 c2

 7−→


R A B

a1 b1

S B C

b1 c1
b1 c2


Thus for this lens the GetPut equation is not satisfied. Of course, the reason is
that the Put function we defined ignores the original database state. Failure of
GetPut can be repaired simply by changing Put to take account of the original
state. As we shall see, for any well behaved lens the Get and Put functions are
surjective. The lens above thus necessarily fails to satisfy PutGet because the
Get is not surjective. Indeed, for the Get defined, there is no Put defining a lens
satisfying PutGet.

We can modify the example to a very well behaved lenses. First modify the
view schema so that it has two signatures T (A), V (C). Then the new Get map-
ping on a database state R,S determines the view state (tables) T,V by selecting
components from rows of R,S with B component b1. The Put on {T,V}, {R,S}
simply places rows with B component b1 into R,S for each element of T,V. �

Notice that there is a unique lens with in set with S empty. Since the identity
is surjective, PutGet for a lens in set implies that if S is non-empty then g is
surjective.

Recall the adjunction from Example 5 for the case C = set:

set/V setjj
∆

set/V set

Σ
))⊥

In this case, for S
g // V in set/V and X in set, we have Σ(g) = S and

∆(X) = V ×X π0 // V , so ∆Σg = V × S π0 // V . The g’th component of the

unit for the adjunction is g
ηg //∆Σg. The g’th component of the multiplication

for the monad ∆Σ is
∆Σ∆Σg

µg //∆Σg

which as a commutative triangle in set is:

V × V × S

V

π0
""EEEEEEEEEEV × V × S V × S
π0,2 // V × S

V

π0
||yyyyyyyyyy

Let L be a lens. The PutGet law and the GetPut law say that i) and ii) of
Proposition 7 are satisfied, and the PutPut law says that iii) of that Proposition
is satisfied. Thus:

Proposition 9. A very well behaved lens L = (S, V, g, p) is exactly the data for
an algebra (g, p) for the monad T∆Σ on set/V .

Our primary interest is very well behaved lenses. We now assume that unless
otherwise noted all lenses are very well behaved. With that assumption, and for
later use, we make the following general definition.

Definition 10. Let C be a category with finite products and V an object of C.
A lens in C with view states V is an algebra for the monad ∆Σ.

Equivalently, a lens in C with view states V is a pair of arrows C
g // V ,

V × C
p // C satisfying the equations in Proposition 7.

Next we consider monadicity of ∆. Consider the following diagram in which
K is the comparison functor from set to ∆Σ algebras.

set (set/V)T∆ΣK //set

set/V

∆

��

set

set/V

UU

Σ
a

set/V

(set/V)T∆Σ

xx
set/V

(set/V)T∆Σ
99

a

There is a trivial case: if V = ∅, then set/V ∼= 1, the terminal category, and
then the category of ∆Σ algebras is also isomorphic to 1. Otherwise, as we show
directly, K is an equivalence of categories. That is, we are going to show directly
that ∆ is monadic. Notice that K is defined on objects as follows:

K(C) = (π0 : V × C // V, π0,2 : V × V × C // V × C)

We will need:

Lemma 11. Let (S
g // V, V × S

p // S) be a ∆Σ algebra in set. For all v, v′

in V , g−1(v) ∼= g−1(v′)

Proof. The statement is evidently true when S is empty. Otherwise g is surjec-
tive, so all g−1(v) are non-empty.

For v, v′ in V , define ϕv,v′ : g−1(v) // g−1(v′) by ϕv,v′(s) = p(v′, s), and
note ϕv,v′(s) is in g−1(v′) since g(p(v′, s)) = v′. Next,

ϕv′,v(ϕv,v′(s)) = ϕv′,v(p(v′, s))

= p(v, p(v′, s))

= p(v, s)

= p(g(s), s)

= s

where the last three equations follow from, respectively, PutPut, that s is in
g−1(v), and GetPut. Interchanging the roles of v and v′ in the equation just
demonstrated shows that ϕv′,v is inverse to ϕv,v′ which completes the proof. ut

Theorem 12. If V is non-empty, K is an equivalence and so ∆ is monadic.

Proof. Choose a v0 in V . We define a functor H : (set/V)T∆Σ // set making

K an equivalence. Let (S
g // V, p) be a ∆Σ algebra. Define C = g−1(v0) and

H(g, p) = C. Note that by Lemma 11, C is (up to isomorphism) independent
of the choice of v0. To define H on arrows recall that an arrow f in (set/V)∆Σ

from (g, p) to (S′
g′ // V, p′) is a mapping S

f // S′ satisfying g′f = g and
p′(V × f) = fp. Thus f restricts to C = g−1(v0) // g′−1(v0) = C ′ and H is
clearly functorial.

Next we show that KH is isomorphic to the identity on (set/V)T∆Σ . To do
this we show that (g, p) is isomorphic to KH(g, p) = (V × C π

0
// V, π0,2). By

the definition of C, 〈g, p(v0,−)〉 maps S to V ×C and g = π0〈g, p(v0,−)〉 giving
an arrow from g to π0 in set/V . It is an algebra homomorphism because:

〈g(p(v, s)), p(v0, p(v, s))〉 = 〈v, p(v0, s)〉 = π0,2〈v, g(s), p(v0, s)〉

The restriction of p to V ×C provides an arrow in set/V from π0 to g which is an
algebra homomorphism by PutPut. To show these arrows are mutually inverse
consider:

S V × C
〈g,p(v0,−)〉//S

V

g

$$JJJJJJJJJJJJ V × C

V

π0

��

V × C S
p|V×C //V × C

V
��

S

V

g

zztttttttttttt

and note that p(g(s), p(v0, s)) = p(g(s), s) = s so the top composes to the
identity on S. On the other hand, 〈g(p(v, c)), p(v0, p(v, c))〉 = 〈v, p(v0, c)〉 =
〈v, p(g(c), c)〉 = 〈v, c〉 showing that the other composite is the identity.

Finally we need that HK ∼= 1set, but this is easy to see. Indeed, since K(C)
is a structure on π0 : V × C // V , HK(C) = π−1

0 (v) ∼= C for any v. ut

We note an important point from the proof:

Corollary 13. Let L = (S, V, g, p) be a (very well behaved) lens with V non-

empty, v0 in V , and C the set g−1(v0). Denote the projection V × C π0 // V .
The arrow 〈g, p(v0,−)〉 : S // V ×C is inverse to p|V×C in set and defines an
isomorphism (g, p) ∼= (π0, π0,2) in ∆Σ algebras.

Remark. The C in the corollary is the set Bancilhon and Spyratos call the “com-

plement” of V . Here the complement view is simply the projection V ×C π1 //C,
and of course we have a “constant complement” decomposition.

The theorem also follows easily by Beck’s monadicity theorem, Theorem 6
above. We know ∆ has a left adjoint. It is a “logical” functor, so it preserves all
coequalizers (and this is also easy to see directly). There remains to show only
that ∆ reflects isomorphisms. However, h : ∆(X) // ∆(Y) is iso exactly if the
function h : V ×X //V ×Y is. Since V is non-empty and h is an arrow of set/V
(by the projections), for v0 in V the restriction of h to {v0}×X // {v0}× Y is

a bijection. We conclude that X
∼= // Y .

In some writings Pierce et al. allow the Get and Put to be partial functions
and call the lenses of Definition 8 a “total lens” (for example [6]), but they
remark that “In practice, we always want lenses to be total...”. For most of our
purposes, lenses with total Get and Put suffice, but we introduce the following
terminology for use below.

Definition 14. A partial lens in set L = (S, V, g, p) where S, V , g, p are as
above, except that g and p may be partial mappings. A partial lens in set is
total for P ⊆ set(S, S) and U ⊆ set(V, V) if

(i) g is a total function

(ii) the domain of p is {(u(gs), s)|u ∈ U, s ∈ S}

(iii) p(v, s) = s′ implies s′ = r(s) for some update r ∈ P

In the database context, the set U is intended to be the set of (view) updates
for which a translation is required, and P is a set of (database) updates which
includes the translations of updates in U . By conditions ii) and iii), a partial
lens which is total for any U such that V × S ⊆ {(u(gs), s)|u ∈ U, s ∈ S} and P
such that the image of p is contained in the images of updates in P is the same
thing as a lens in set. Now P is merely the set of potential translations, so as
long as it contains the identity (so that iii) is satisfied), it does no harm to take
P = set(S, S).

For database views, it certainly makes sense to require the Get g for a lens
to be totally defined, but a Put might be partial.

Let C be a category with (chosen) finite limits. We also require that C have an
epi-mono factorization system for its arrows, and that pullbacks of monic arrows
are monic. Denote by par(C) the partial map category. Its objects are those of

C and an arrow C
f // C ′ is a span from C to C ′ denoted C oo f0

Df
f1 // C ′

with f0 monic. Composition is by (chosen) pullback. With this hypothesis, it is
easy to extend the ∆V and ΣV from above to the partial map category and to
check that there is still an adjunction between them. In the set case:

par(set/V) par(set)
ll

∆

par(set/V) par(set)

Σ
++

⊥

For the resulting monad, the comparison functor K has domain par(set) and
codomain the ∆Σ algebras (par(set))T∆Σ . However K is no longer an equiva-
lence, nor is it even fully faithful. It is still the case, of course, that a ∆Σ algebra
is a (partial) lens.

We end this section by recalling the relationship between lenses and the
translators of Bancilhon and Spyratos [1]. As mentioned above, for Bancilhon
and Spyratos a view g : S // V is a surjective function. A complete set of
updates is a set U ⊆ set(V, V) closed under composition and such that for u
in U and s in S there is a v in U such that vu(s) = s. A translator T for U
is a composition-preserving function T : U // set(S, S) such that for u in U ,
gT (u) = ug. The relationship noted by Pierce and Schmitt is:

Theorem 15. There is a one-one correspondence between, one the one hand,
triples (g, p, U) with L = (S, V, g, p) a very well behaved lens that is total (Defi-
nition 14) for a complete set of updates U ⊆ set(V, V) (and P ⊆ set(S, S)) and,
on the other hand, triples (g, U, T) where T is a translator for the complete set

of updates U of a view S
g // V .

This theorem appears in a manuscript [17] (referred to in [4]). By the theo-
rem, lenses, or ∆Σ algebras, correspond to translators. Bancilhon and Spyratos
showed directly that translators are essentially the same as product decompo-
sitions. The main point of this section is that Theorem 12 and Corollary 13
show that translators correspond to decompositions indirectly using Theorem
15. Moreover, our results determine the second factor in a decomposition of the
domain of the view as the set determined by an algebra/lens (under H in the
proof above).

For completeness, we note that [17] also shows that a merely well behaved
lens corresponds to the notion of dynamic view in the sense of [7]. Furthermore
it is shown by direct construction that the domain of a very well behaved lens
decomposes as a product with V (not as a consequence of Theorem 12). Indeed,
the product decomposition for lenses was also noted by Oles [14].

5 The Ordered Case: Update Strategies

Denote by ord the category of partially ordered sets and monotone mappings.
We recall that ord is a category with finite limits. The finite limits are computed
as in set. Indeed, the order on a product of ordered sets is essentially a product
of their orders, and a terminal ordered set is a singleton set with its unique order.
The equalizer of a pair of monotone mappings is their equalizer in set with the
inherited order. It follows that monomorphisms in ord are regular (they are the
equalizers), and the pullback of a mono is a mono.

Surjective mappings in ord are, of course, epimorphisms. However, like the
category of categories, ord is not a regular category.

Since ord has products, for any ordered set V , we have an adjunction that
we again denote Σ a ∆. A ∆Σ algebra is a lens in ord with view states V .

Below we will need to use a factorization system for arrows in ord which we

now describe. Let X
f // Y be a monotone mapping of ordered sets. Denote by

≡f the (kernel) equivalence relation on the set X defined by x ≡f x′ iff fx = fx′.

As usual this means the function f factorizes as X
pf //X/ ≡f

if //Y through
the quotient set. We define a partial order ≤f on X/ ≡f as the transitive closure
of the relation @ on X/ ≡f defined by [x1] @ [x2] iff ∃x′1, x′2 such that x1 ≡f x′1,
x′1 ≤ x′2 and x′2 ≡f x2. The relation ≤f is reflexive and transitive by definition.
That it is antisymmetric follows antisymmetry of the order on Y . The function
pf is clearly monotone by its definition. Transitivity of the order on Y makes if
monotone.

In [8], Hegner defines a database schema to be a partially ordered set S. His
intention is that S is the totality of database states and that database states may

be comparable. For him a view is an open surjection S
g // V of ordered sets.

This means that g is required to be an onto monotone function, and whenever
v1 ≤ v2 in V there exist s1, s2 in S with s1 ≤ s2 and g(si) = vi. Open surjections
are so named because they define open mappings for the order topologies on S

and V .

Definition 16. [8] A closed update family T on a database schema S is an order
compatible equivalence relation, i.e. s1 ≤ s2 ≤ s3 and s1 ∼T s3 implies s1 ∼T s2.

The idea is that s1 ∼T s2 means that s1 is updatable to s2. Transitivity
and symmetry mean updates are composable and reversible (like a complete
set of updates for Bancilhon and Spyratos). Note that ≤f as defined above is
order-compatible.

Definition 17. [8] Let S
g // V be a view and T a closed update family on V .

An update strategy for T is a partial function V ×S
p //S such that (equations

valid when defined):

up1: p(v, s) is defined iff (v, g(s)) in T

up2: g(p(v, s)) = v

up3: p(g(s), s) = s

up4: p(g(s), p(v, s)) = s

up5: p(v′, p(v, s)) = p(v′, s)

up6: g(s) ≤ v implies s ≤ p(v, s)

up7: s1 ≤ s2 ≤ p(v1, s1) implies ∃v2, p(v2, s1) = s2 & p(g((p(v1, s1)), s2) =
p(v1, s1)

up8: s1 ≤ s2 & v1 ≤ v2 implies p(v1, s1) ≤ p(v2, s2)

The property up8 states that an update strategy p is a monotone partial
mapping. If V is empty there is, of course, exactly one view to V from the
empty order, and otherwise as we show next an update strategy is exactly a lens
in ord.

Theorem 18. Let V be non-empty in ord. For a view S
g // V , an update

strategy p for the “all” closed update family, V ×V , is an algebra for the monad

∆Σ on ord/V . Conversely, a view S
g //V with a ∆Σ algebra structure in ord,

V ×S
p //S, determines an update strategy for the closed update family V ×V .

Proof. For the first part, since g is surjective and T is symmetric, up1 implies
that p is total. By up8, p is monotone (as is g, being a view). Now up2, up3 and
up5 state that an update strategy p satisfies the PutGet, GetPut and PutPut
laws for a lens in ord, so by Proposition 7, p is a ∆Σ algebra structure on g.

For the converse, suppose that a view g is a ∆Σ algebra with structure
p. Thus g is total and surjective since gp = π0 is surjective. Moreover p is
monotone so up8 is satisfied. Because p is total, up1 is trivially satisfied for
T = V ×V (p(v, g(s)) is defined iff (v, g(s)) is in T). By Proposition 7 again, the
algebra equations imply up2, up3 and up5. Thus, up1, up2, up3, up5 and up8
are satisfied.

Since p(g(s), p(v, s)) is always defined, up5 (PutPut) implies up4 as seen by
p(g(s), p(v, s)) = p(g(s), s) = s. Furthermore, up8 implies up6 since g(s) ≤ v

implies (g(s), s) ≤ (v, s) implies s = p(g(s), s) ≤ p(v, s).
That leaves up7. Using up3, we can restate up7 as:

s1 ≤ s2 ≤ p(v1, s1) implies p(g(s2), s1) = s2 & p(v1, s2) = p(v1, s1)
(take v2 = g(s2) and note g(p(v1, s1)) = p(v1, s1))

Suppose that s1 ≤ s2 ≤ p(v1, s1). Now s2 = p(v2, s2) ≤ p(v2, p(v1, s1)) =
p(v2, s1) using v2 = g(s2), the hypothesis and up5. On the other hand p(v2, s1) ≤
p(v2, s2) = s2 using that p is monotone. The inequalities give p(g(s2), s1) = s2.
Using the equality just proved and up5 again gives p(v1, s2) = p(v1, p(v2, s1)) =
p(v1, s1). ut

For consistency with the definitions from [8], we are going to modify slightly
the monad ∆Σ on ord. We denote the category of non-empty partially ordered
sets by ord+. For a non-empty partially ordered set V , we denote the full sub-
category of ord/V whose objects are open surjections by ord+/oV .

Lemma 19. The functors Σ and ∆ restrict to ord+/oV and ord+, respectively,
and for the restrictions we still have Σ a ∆.

Proof. The only point we note is that a projection to a non-empty ordered set
is clearly open. ut

Once again, we denote the comparison functor from ord+ to ∆Σ algebras
by K.

Theorem 20. Let V be non-empty in ord. The comparison functor K is an
equivalence and so ∆ is monadic.

Proof. The proof is the same as that for Theorem 12 once we note that the ϕv,v′
used there are monotone since they are defined using the monotone p. ut

The analogue of Corollary 13 is:

Corollary 21. Let V be non-empty in ord with v0 in V . Let S
g //V be a view,

p an update strategy for the closed update family V × V , and C the ordered set
g−1v0. The arrow 〈g, p(v0,−)〉 : S // V × C is inverse to p|V×C in ord and
defines an isomorphism (g, p) ∼= (π0, π0,2) in ∆Σ algebras.

Remark. The C in the corollary is the ordered set Hegner [8], Corollary 3.10,
calls the meet complement of V .

Like the main result in the previous section, Theorem 20 also follows by
Beck’s monadicity theorem, Theorem 6. However in the ord case we need to
consider contractible coequalizers, and the resulting argument is no simpler than
the direct proof above.

Steve Lack reminded us that for C with finite limits and coequalizers, the

functor ∆V is monadic exactly when the unique arrow V
tV // 1 is an effective

descent morphism. For this to be so, it is sufficient that V have an element (a
right inverse to tV), which explains the sufficiency of requiring the element v0 in
our results above.

Because ord has pullbacks, and the pullback of an injective monotone map-
ping is injective, we can define the category of partial monotone mappings
par(ord). Since ord has finite limits, it is also the case that for an ordered set
V , ord/V has finite limits. As in the previous Section, we have an adjunction:

par(ord/V) par(ord)
ll

∆

par(ord/V) par(ord)

Σ
,,

⊥

Once again the comparison functor K from par(ord) to ∆Σ algebras is not
an equivalence, but a ∆Σ algebra is certainly a partial lens in ord. The partial
lenses in the image of the comparison functor have a decomposition like that in
Corollary 21.

We conclude this section by pointing out that Corollary 21 again provides
an indirect proof of the update strategy/meet complement correspondence.

6 Conclusion

The main results of this article show that the constant complement view updat-
ing strategies arise because they correspond to the concept of lens or ∆Σ algebra
in appropriate categories. As pointed out in [8], the value of such strategies lies
in their assurance that anomalous view updates are forbidden.

If we ignore the restriction to non-empty orders and open surjections in the
previous section, we see there is more than analogy linking ∆Σ algebras in set
and in ord. There is a forgetful functor U : ord // set which has a left adjoint

D, whose value at a set X is the discrete ordered set on X. Now U can be
extended to a functor UV : ord/V // set/UV which on objects simply applies
U to a monotone mapping X // V . This functor has a left adjoint that we
denote DV . Its value at a function Y // UV is the adjunct monotone mapping
DY // V . The following diagram sums up the situation and we note that both
squares commute. The functors ∆ are monadic, and this is a sort of “adjoint
change of base” for algebras. Moreover, the functors DV and D express the set
lenses as a special case of ord lenses.

ord/V ordkk
∆

ord/V ord

Σ

**⊥

set/UV

ord/V

DV

HH

set/UV

ord/V

��

UVa

set

ord

D

GG

set

ord

��

Ua

set/UV setkk
∆

set/UV set

Σ

**⊥

We are currently considering lenses in the context of the categorical sketch
data model [10]. In that model we showed how updatability is expressible via
cartesian structure on the database states (category) [11]. In a forthcoming arti-
cle we will address connections between the lens and complements approach to
updating and that using (op)fibrations.

References

1. F. Bancilhon and N. Spyratos. Update semantics of relational views, ACM Trans.
Database Syst. 6, 557–575, 1981.

2. M. Barr and C. Wells. Category theory for computing science. Prentice-Hall,
second edition, 1995.

3. M. Barr and C. Wells. Toposes, Triples and Theories. Grundlehren Math. Wiss.
278, Springer Verlag, 1985.
Available from ftp://ftp.math.mcgill.ca/pub/barr/ttt/

4. A. Bohannon, B. Pierce and J. Vaughan. Relational Lenses: A language for up-
datable views. Proceedings of ACM PODS-2006, 338–347, 2006.

5. Z. Diskin and B. Cadish. Algebraic graph-based approach to management of mul-
tidatabase systems. In Proceedings of The Second International Workshop on Next
Generation Information Technologies and Systems (NGITS ’95), 1995.

6. J Foster, M. Greenwald, J. Moore, B. Pierce and A. Schmitt. Combinators for bi-
directional tree transformations: A linguistic approach to the view update problem.
ACM Transactions on Programming Languages and Systems, 29, No. 17, 2007.

7. G. Gottlob, P. Paolini and R. Zicari. Properties and update semantics of consistent
views, ACM Trans. Database Syst. 13, 486–524, 1988.

8. S. J. Hegner. An order-based theory of updates for closed database views. Annals
of Mathematics and Artificial Intelligence, 40, 63–125, (2004).

9. M. Hofmann and B. Pierce. Positive subtyping. SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), 186-197, 1995.

10. M. Johnson, R. Rosebrugh, and R. J. Wood. Entity-relationship-attribute designs
and sketches. Theory and Applications of Categories 10, 94–112, 2002.

11. M. Johnson and R. Rosebrugh. Fibrations and universal view updatability. The-
oretical Computer Science, 388, 109–129, 2007.

12. K. Lellahi and N. Spyratos. Towards a categorical data model supporting struc-
tured objects and inheritance. LNCS 504, 86–105,1991.

13. P. O’Hearn and R. Tennent. Parametricity and local variables. Journal of the ACM
42, 658–709, 1995.

14. F. J. Oles. A category-theoretic approach to the semantics of programming lan-
guages. PhD Thesis, Syracuse University, 1982.

15. F. J. Oles. Type algebras, functor categories and block structure. In Algebraic
methods in semantics, 543–573. Cambridge Press, 1986.

16. B. Pierce. Basic category theory for computer scientists. MIT Press, 1991.
17. B. Pierce and A. Schmitt. Lenses and view update translation. Working Draft,

April 2003.
18. F. Piessens and E. Steegmans. Categorical data specifications. Theory and Appli-

cations of Categories, 1, 156–173, 1995.
19. F. Piessens and E. Steegmans. Selective Attribute Elimination for Categorical

Data Specifications. Proceedings of the 6th International AMAST. Ed. Michael
Johnson. Lecture Notes in Computer Science, 1349:424-436, 1997.

