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Abstract Bidirectional Transformations provide mechanisms for main-
taining synchronization between updatable data sources. Lenses are cer-
tain mathematically specified bidirectional transformations. As part of a
project to unify the treatment of symmetric lenses (of various kinds) as
equivalence classes of spans of asymmetric lenses (of corresponding kinds),
we relate symmetric delta lenses with spans of asymmetric delta lenses.
Because delta lenses are based on state spaces which are categories rather
than sets, there is further structure that needs to be accounted for. One
of the main findings in this paper is that the required equivalence rela-
tion among spans is compatible with, but coarser than, the one expected.
The main result is an isomorphism of categories between a category whose
morphisms are equivalence classes of symmetric delta lenses (here called
fb-lenses) and the category of spans of delta lenses modulo the new equiv-
alence.

1 Introduction

Synchronization of data among disparate sources has become increasingly important
in view of the ubiquity of distributed systems. One approach to this problem is
known as Bidirectional Transformations. A bidirectional transformation between two
data sources consists of first, a method for determining when data are synchronized,
often represented by a relation, and second, further methods for data transformation
intended to restore synchronization [18]. Examples include: cache management which
requires synchronization of data between caches and main memory, specifications and
implementations which need to be kept consistent, and contact lists which need to be
synchronized across devices.

Effective use of bidirectional transformations requires precise specification of the
consistency relation (the synchronization data) and the consistency restorers. Fur-
thermore, we expect these to satisfy certain basic properties. This amounts to a
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2 · Michael Johnson and Robert Rosebrugh

mathematical data structure: objects, operations and equations. Examples of bidi-
rectional transformations presented this way are often called lenses.

In some bidirectional transformations there is a master data source and a depen-
dent data source. For instance, the state of a cache can always be derived from main
memory, while main memory cannot in general be reconstructed from a cache state.
Of course, when the cache state changes (by a write to the cache) the change can be
propagated to the main memory (an example of a consistency restoring operation),
but the resulting state of the main memory depends on both the new state of the
cache and the old state of the main memory. In such bidirectional transformations
there is an asymmetric aspect, and the corresponding lenses are called asymmetric.

The lenses that were first introduced [20] were asymmetric in the sense just de-
scribed. In turn, the lens versions of more general bidirectional transformations are
referred to as symmetric lenses.

Notice that the importance of lenses is consistency restoration. When the two
sources are consistent there is nothing to be done. When one of the sources changes
state consistency needs to be restored, typically by changing the state of the other
source. This leads to another distinction among types of lenses. In restoring consis-
tency a lens may use information about the change of state itself, sometimes called
the “delta”, or instead it might use only the new state after the change. In the former
case the lens is called a delta lens, and in the latter, a set-based lens. (“Set-based” is
used because the restoring operation acts from the set of states, paying no attention
to the nature of transitions among elements of the set of states.)

In [8], Hofmann et al defined and studied set-based symmetric lenses. Since then,
with the study of variants of asymmetric lenses (set-based or otherwise), there has
been a need for more definitions of corresponding symmetric variants. This paper
is part of a project by the authors to develop a unified theory of symmetric and
asymmetric lenses of various kinds. The goal is to make it straightforward to define
the symmetric version of any, possibly new, asymmetric lens variant, and conversely.
Once an asymmetric lens is defined the unified theory should provide the symmetric
version, and vice-versa.

It was already noted in [8] that there were potentially two approaches to defining
set-based symmetric lenses. One involved studying various right and left operations
(corresponding to what other authors call forwards and backwards operations). The
other would be based on a pair of asymmetric lenses with a common master source.
Such a pair is called a “span” of asymmetric lenses (see the display containing S on
page 9). In both approaches an equivalence relation was needed for two reasons:
The first need is to ensure that the composition (of symmetric lenses or spans of
asymmetric lenses) is associative. The second need is to identify symmetric lenses or
spans of asymmetric lenses which are equivalent in their updating actions, although
they might differ in “hidden” details such as their complements (see [8]) or the common
master source. The definition of symmetric lens in [8] is presented in terms of right
and left update operations, noting that “in the span presentation there does not seem
to be a natural and easy-to-use candidate for . . . equivalence”.

In [12] the present authors developed the foundations needed to work with spans
of asymmetric lenses of various kinds and proposed an equivalence relation on spans
of (well-behaved [20]) set-based asymmetric lenses. This answered the concern noted
at the end of the previous paragraph and is a step towards the unified theory. Of
course, the work described so far, being entirely set-based, is still far from a unified
theory. In this paper we turn to the delta lenses of Diskin et al [2]. We study the
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symmetric approach derived from spans of such lenses, and finally we compare it with
the symmetric approach to delta lenses (forwards and backwards style) that Diskin
et al proposed in [3].

The reader is assumed to be familiar with the most basic notions of category
theory as found in, for example, Barr and Wells [1], Mac Lane [17], or other standard
texts.

The paper is structured as follows. Section 2 reviews asymmetric delta lenses
(based on [2] and referred to here as d-lenses) including several detailed examples and
some basic facts about spans of d-lenses. Section 3 introduces symmetric delta lenses
(based on [3], and called here fb-lenses after their basic operations called “forwards”
and “backwards”). We consider several examples of fb-lenses, define a composite for
fb-lenses, and construct an fb-lens from a span of d-lenses and vice versa. As in
the work of Hofmann et al, both fb-lenses and spans of d-lenses need to be studied
modulo an equivalence relation. Section 4 introduces the two equivalence relations.
Section 5 shows that the two equivalence relations do indeed yield two categories
whose morphisms are, respectively, (equivalence classes of) fb-lenses and (equivalence
classes of) spans of d-lenses. Of course, in order to construct the two categories we
also need to show that the equivalence relations we have introduced are congruences.
Finally, in Section 6 we show that there is an equivalence between the two categories.
Indeed, in this case the equivalence is an isomorphism of categories.

Because of the usefulness of category-based lenses (in particular delta lenses) in
applications, the work presented here lays important mathematical foundations. Fur-
thermore the extra mathematical structure provided in the category-based variants
has revealed a surprise — an equivalence relation generated by non-trivial lenses is
not coarse enough to ensure that two spans of d-lenses with the same fb-behaviour
are always identified. The difficulty that arises is illustrated in a short example at the
end of the paper which amounts to “twisting” the structures so that no single lens can
commute with the lenses on the left side of the spans, and at the same time commute
with the lenses on the right side of the spans. The solution, presented as generators
of one of the equivalence relations in Section 4, relaxes the requirement that the com-
parison be itself a lens, and asks that it properly respect the put operations on both
sides (rather than having its own put operation commuting with both sides). The
resulting requirement is entirely natural.

2 Asymmetric delta lenses

For any category C, we write |C| for the set (discrete category) of objects of C. We
write C2 for the so-called “arrow category” of C. An object A of C2 is an arrow of
C denoted A = Af : A0

// A1 (where the subscript f is just a reminder that this is
the “function part” of the object A). An arrow in C2 from the object A to another
object B = Bf : B0

//B1 is a pair of arrows

g = (g0 : A0
//B0, g1 : A1

//B1)

satisfying g1Af = Bfg0 so that the following square of arrows commutes:

A1 B1g1
//

A0

A1

Af ��

A0 B0
g0 // B0

B1

Bf��
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The identity arrow from A to itself is the pair of identity arrows (idA0
, idA1

) and the
composite hg of g with h defined as h = (h0, h1) from B to C is just hg = (h0g0, h1g1).

For a functor G : S //V, we denote by G/V the so-called “comma” category. The
objects of G/V are formally pairs (S, α) where S is an object of S and α an arrow of V
whose domain is G(S) and whose codomain is arbitrary, for example α : G(S) // V .
An arrow of G/V from (S, α) to (S′, β) where β : G(S′) // V ′ is a pair (σ, ϕ) where
σ : S // S′ is an arrow of S and ϕ : V // V ′ is an arrow of V and they satisfy
ϕα = βG(σ), so that the following square of arrows commutes:

V V ′
ϕ
//

G(S)

V

α
��

G(S) G(S′)
G(σ) // G(S′)

V ′

β��

The identity arrow from (S, α) to itself is the pair of identity arrows (idS , idV ) and
the composite of (σ, ϕ) with (σ′, ϕ′) is defined to be (σ′σ, ϕ′ϕ).

We now recall the definition of an asymmetric delta lens ([2, 11]) which we will
usually abbreviate to d-lens.

Definition 1 An asymmetric delta lens (d-lens) from S to V is a pair (G,P ) where
G : S //V is a functor (the “Get”) and P : |G/V| // |S2| is a function (the “Put”)
and the data for α : G(S) // V and β : G(S′) // V ′ satisfy:

(i) d-PutInc: the domain of P (S, α) is S

(ii) d-PutId: P (S, idG(S)) = idS

(iii) d-PutGet: G(P (S, α)) = α

(iv) d-PutPut: if S′ is the codomain of P (S, α) (and hence G(S′) = V ) then
P (S, βα) = P (S′, β)P (S, α)

The reader will notice that d-PutId and d-PutPut look like functoriality require-
ments for P . However, in the definition P is merely a function on the objects of the
comma category G/V, that is, P is not defined on the arrows of that comma category.
Nevertheless, because the arrows of the comma category are pairs of arrows, one from
S and one from V, and because the objects of the comma category are (indexed)
arrows of V, P can be extended to the subcategory of G/V whose arrows are a pair
of an identity arrow from S and an arrow from V. Moreover, d-PutId and d-PutPut
make the extension of P functorial on that subcategory. Details are spelled out in
[11].

At this point we digress to remark on adjectives commonly used in the lens com-
munity. Following [20], lenses satisfying conditions corresponding to d-PutGet are
called well-behaved. A lens satisfying an additional condition analogous to d-PutPut
is commonly called very well-behaved. In this paper all of our asymmetric delta lenses
satisfy both of these. We call them simply d-lenses. Further discussion of PutPut
conditions can be found in [10].

In the rest of this article we are often going to leave out brackets to shorten
expressions where the meaning is unambiguous and should be clear. So, for example,
the application of the functor G to the object S written G(S) above may be shortened
to GS, or G(P (S, α)) may be written GP (S, α).
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We suggest here some ideas to help orient the reader with the notations used.
Both the categories S and V represent categories of model states. Objects of S are
model states and an arrow S //S′ of S represents a specific transition from the state
S which is its domain to the state S′ which is its codomain. Such specified transitions
are often called “deltas”. Similarly for V. A functor G : S //V maps states of S to
states of V — S is sent to GS. Furthermore, being a functor it maps deltas S // S′

in S to deltas GS // GS′ in V. An object of G/V, being a pair (S, α : GS // V ),
encodes both an object of S and a delta starting from GS. Such a pair is the basic
input for a Put operation. The Put operation P itself, in the case of a d-lens, is just
a function (not a functor) and it takes such an “anchored delta” (S, α : GS // V ) in
V to a delta in S which, by d-PutInc, starts at S. The axioms d-PutId and d-PutPut
ensure that the Put operation P respects composition and identities. Finally, the
axiom d-PutGet ensures that, as expected, the Put operation on a given delta, say α,
results in a delta in S which is carried by G to α.

For examples of d-lenses, we refer the reader to [2]. We also consider here several
examples which we will study further in the context of our constructions below. The
third, Example 4, will be considered throughout the paper. The examples are delib-
erately simple, but non-trivial, and the calculations they embody arise frequently as
important aspects of more elaborate real-world examples.

Example 2 We denote by set the category whose objects are finite sets and whose
arrows are functions between them. As a category of models, the model states (ob-
jects) of set are each just a single set, which can be thought of as the entity set for a
single entity. The arrows are functions which update one state (entity set) to another.

We also consider set2, another category of model states (see the definition of C2

at the beginning of this section). Recall that an object (or model state) X of set2 is a
function Xf : X0

//X1 between (finite) sets X0 and X1. As a model state, the object
X has exactly two entity sets, X0 and X1, and a single constraint (perhaps a foreign
key) specified by the function Xf . For example, X0 might be the state of a Persons
entity, X1 the state of an Addresses entity, and Xf the assignment of a person to an
address. An arrow in set2 from the object X to another object (model state) Y is a
pair of functions g = (g0, g1) between corresponding entity sets which are compatible
with the respective foreign key or constraint.

We can define two distinct d-lenses from set2 to set as follows.
The first d-lens (G1, P1) has as its Get functor, G1 : set2 // set, the “codomain”

functor which sends an object X with Xf : X0
//X1 of set2 to the set G1(X) = X1

and the arrow g = (g0, g1) of set2 to the function g1. It is easy to verify that G1 is a
functor.

The first Put, P1 is defined as follows. Consider any finite set Z1 and any function
from G1(X) = X1 to Z1, say α : X1

// Z1. We define P1(X,α) to be the arrow
in (set2) whose codomain is the model with function Zf defined by Zf = αXf :
Z0 = X0

// Z1. Then P1(X,α) from X to Z is defined by the pair of arrows
P1(Xf , α) = (idX0

, α). Clearly αXf = αXf idX0
so P1(X,α) is an arrow of set2. The

idea of the Put is the following. The function α indicates an update of the entity
set X1, but we have no information about an update of the entity set X0, so we just
leave it alone and make the foreign key for the new object Z just the composite of
Xf and α. Moreover, this systematic choice guarantees that the d-PutPut axiom will
be satisfied.

The other requirements for a d-lens are easily checked for the pair (G1, P1).
The second d-lens (G0, P0) has as its Get functor, G0 : set2 // set, the “domain”
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functor which sends an object X with Xf : X0
//X1 of set2 to the set G0(X) = X0

and the arrow g = (g0, g1) of set2 to the function g0.
The second Put, P0 has a slightly more complicated definition (and this is why we

introduce P0 after P1). We begin with any set Z0 and any function from G0(X) = X0

to Z0 in set, say α : X0
//Z0. The codomain of P0(X,α) has to be an object of set2

whose function has the domain Z0. We define Z to be the object whose function is
the right hand vertical arrow in the set expanded pushout of Xf along α:

X1 Z1
α′
//

X0

X1

Xf ��

X0 Z0
α // Z0

Z1

Zf��

Recall that a pushout is also called an “amalgamated sum” and Z1 is found by first
taking the disjoint union of X1 and Z0 and then identifying pairs of elements in the
two summands that are images of the same element of X0 under Xf and α. Now
we can define P0(X,α) to be the arrow in (set2) from X to Z defined by the pair of
functions P0(X,α) = (α, α′). Here the function α gives an update of the entity set X0.
To define the codomain Z of P0(X,α) we needed to give a compatible update of X1.
In principle there are many ways to do this, but taking the pushout is a systematic
choice which also guarantees that the axiom d-PutPut will be satisfied.

Again, the other requirements to make (G0, P0) a d-lens are easily checked.

Example 3 In our next example of an asymmetric d-lens, set2 is the codomain of the
Get while the domain of the Get is a related category denoted setcs (cs for cospan).
The objects of setcs can be thought of as model states with three entity sets and two
assignments. For example, the entity sets might be Taxis, Persons, and Suburbs. The
assignments from Taxis to Suburbs, and Persons to Suburbs, give the current locations
of Taxis and Persons in what might be a real-time taxi booking system. Formally an
object (model state) X of setcs is determined by three sets denoted X0, X1 and X2

and two functions Xf : X0
//X1 and Xg : X2

//X1. There are no other conditions.
An arrow in setcs from the object X to another object (model state) Y =

(Y0, Y1, Y2, Yf , Yg) is defined to be a triple of functions h = (h0, h1, h2) between cor-
responding entity sets and which are required to be compatible with the respective
arrows. Thus, we require both h1Xf = Yfh0 and h1Xg = Ygh2. That is, the following
is a commutative diagram:

X1 Y1
h1

//

X0

X1

Xf ��

X0 Y0
h0 // Y0

Y1

Yf��

X2 Y2
h2

//

X1

X2

OO
Xg

X1 Y1
// Y1

Y2

OO
Yg

The d-lens (Gf , Pf ) from setcs to set2 is defined simply as follows. For an object
X of setcs as above, Gf (X) is the object of set2 whose function is Xf . For an
arrow h of setcs as above, Gf (h) is the arrow of set2 defined by the pair (h0, h1).
We next define Pf . Suppose that Z is an object of set2 given by Zf : Z0

// Z1,
and h = (h0, h1) is an arrow from Gf (X) to Z in set2. We define Pf (X,h) to
have codomain Z ′ = (Z0, Z1, X2, Zf , h1Xg) and the setcs arrow from X to Z ′ is
h′ = (h0, h1, idX2

).
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It is easy to see that Pf (X,h) is an arrow of setcs and that (Gf , Pf ) satisfies the
required equations. More interesting is to consider the interpretation of the d-lens in
terms of model states for Taxis (X0), Suburbs (X1), and Persons (X2). Indeed, Gf is
just the “view” that shows only the taxis and suburbs information — it forgets the
Persons and Persons to Suburbs information. If the Taxis to Suburbs information in
Gf (X) is updated to the set2 state Z by h, how should we best update the Persons
to Suburbs information in the setcs model state? An answer that is sensible and
satisfying is not to change the Persons at all (so the Persons update is the identity on
X2), and define Z ′

g, as we did, to be the composite h1Xg. We may have added some
new taxis or extended our range by adding some new suburbs, or even “merged” some
suburbs in changing the scale of resolution, but the persons are the same and they
are in the same (possibly merged) locations.

We note in passing that the functor Gdg : setcs // set defined on objects by
Gdg(X) = X2 and in the obvious way on arrows is a candidate for a Get. The reader
might wish to contemplate how to define a suitable Put Pdg. We will return to this
question below.

Example 4 Our final two examples of asymmetric d-lenses, have set2 as codomain
of one Get and a new category setsp (that we define below) as codomain of the other
Get. In both cases the domain of the Gets is a category related to setcs above, and
it is denoted setscp (scp for span, composable pair). The objects of setscp can be
thought of as model states with four entity sets and three assignments. For example,
the entity sets might be Students, Registrations, Courses (offerings) and Instructors.
Two assignments are from Registrations to respectively Students and Courses, and the
last is from Courses to Instructors. The first two functions record registration of a
student in a course offering, and the last gives the instructor for a course offering.
Formally an object (model state) X of setscp is determined by four sets denoted X0,
X1, X2 andX3 and three functionsXf : X1

//X0, Xg : X1
//X2 andXh : X2

//X3.
There are no other conditions. The main difference from the previous examples is the
direction of the functions, and that changes the lenses we construct.

An arrow of setscp from the object X to Y = (Y0, Y1, Y2, Y3, Yf , Yg, Yh) is a four-
tuple k = (k0, k1, k2, k3) of functions between corresponding entity sets, compatible
with the respective assignments. Thus we require k0Xf = Yfk1, k2Xg = Ygk1 and
k3Xh = Yhk2, meaning the following is a commutative diagram:

X1 Y1
k1

//

X0

X1

OO
Xf

X0 Y0
k0 // Y0

Y1

OO
Yf

X2 Y2
k2

//

X1

X2

Xg ��

X1 Y1
// Y1

Y2

Yg��

X3 Y3
k3

//

X2

X3

Xh ��

X2 Y2
// Y2

Y3

Yh��

The first d-lens (Gr, Pr) from setscp to set2 is quite simple. For an object X
of setscp as above, we define Gr(X) to be the set2 object whose function is Xh.
So the Get remembers only the instructor assignments. For an arrow k of setscp
as above, we define Gr(k) to be the arrow of set2 defined by the pair (k2, k3). We
also need to define Pr. To interpret Pr, suppose that W is a new assignment of
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instructors (as an object of set2) and k : Gr(X) //W is an update from the current
assignment (which is Gr(X)) to W , for example an insertion of new course offerings
and their instructor assignments. There should be no change to students or their
course registrations, and that is exactly the effect of Pr(X, k): it incorporates the
update k, but leaves the Students and Registrations entity sets alone. Formally, if W
is given byWh : W2

//W3 (note the indices), and k = (k2, k3) is an arrow from Gr(X)
toW in set2 then Pr(X, k) has codomainW ′ = (X0, X1,W2,W3, Xf , k2Xg,Wh). The
arrow Pr(X,h) is k′ = (idX0 , idX1 , k2, k3). With this in mind, it is easy to check that
(Gr, Pr) satisfies the equations for an asymmetric d-lens.

Before describing the second d-lens (Gl, Pl) we need to describe its codomain setsp

(sp for span). The objects and arrows have data with the same names as for setcs,
but for X = (X0, X1, X2, Xf , Xg) we orient Xf and Xg in opposite directions (so
Xf : X1

// X0). An arrow h = (h0, h1, h2) from X to Y satisfies the equations
making the squares commute in

X1 Y1
h1

//

X0

X1

OO
Xf

X0 Y0
h0 // Y0

Y1

OO
Yf

X2 Y2
h2

//

X1

X2

Xg ��

X1 Y1
// Y1

Y2

Yg��

The d-lens (Gl, Pl) is slightly more complicated and we present it formally first.
For an object X of setscp, Gl(X) is the object (X0, X1, X2, Xf , Xg) of setsp. For
an arrow k of setscp, Gl(k) is the setsp arrow defined by the triple (k0, k1, k2).
We interpret an arrow k = (k0, k1, k2) : Gl(X) // Z as an update of students,
registrations and course offerings (for example by inserting some of each) without
specifying new instructors. We need Pl. Suppose that Z is an object of setsp given
by (Z0, Z1, Z2, Zf , Zg), and k = (k0, k1, k2) is an arrow from Gl(X) to Z in setsp.
We define Pl(X, k) to have codomain Z ′ = (Z0, Z1, Z2, Z

′
3, Zf , Zg, Z

′
h), an object of

setscp, where the following square is a pushout in set:

X3 Z ′
3

k′3

//

X2

X3

Xh ��

X2 Z2
k2 // Z2

Z ′
3

Z′
h��

The setscp arrow Pl(X, k) from X to Z ′ is k′ = (k0, k1, k2, k
′
3). The interpretation

of Pl(X, k) is now straightforward. The effect is to freely add undetermined new
instructors for any new courses (via Z ′

h) and to update the instructors entity set
accordingly (via k′3). This corresponds to the common practice in many universities
of assigning courses to “InstructorA”, “InstructorB”, etc, before the corresponding
actual instructors are hired (or indeed even determined).

After that extended treatment of examples we now return to the theory of d-lenses.
In [12] we studied spans of asymmetric lenses (two lenses whose Gets have a common
domain) and we developed the technique to compose spans of lenses in general. For
d-lenses, this specializes to Definition 6 below. We first need a small but important
proposition, and we remind the reader about notations for spans and cospans.
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A span is a pair of morphisms, with common domain:

X Y

S

X

u

�������
S

Y

v

��?????

Despite the symmetry, such a span is often described as a “span from X to Y ”, and is
distinguished from the same two arrows viewed as a span from Y toX. The illustrated
span above is often denoted for brevity’s sake u : X oo S // Y : v and, when X, S
and Y are understood or easily derived, we sometimes just refer to it as the span u, v.
The object S is sometimes called the head or peak of the span and the arrows u and
v are called the legs of the span. The objects X and Y are, naturally enough, called
the feet of the span. Cospans are described and notated in the same way but the
arrows u and v are reversed. Finally, if, as sometimes is necessary, a span is drawn
upside down, the common domain is still called the head despite being drawn below
the feet.

When working with spans, for example to compose them, it is often necessary to
calculate a pullback of a cospan. If u : X // Z oo Y : v is a cospan, a pullback
of the cospan is the span v′ : X oo X ×Z Y // Y : u′. The notation X ×Z Y is
used because the pullback of the cospan of functions in set, u : X // Z oo Y : v,
can always be taken to have as head the set whose elements are the pairs (x, y) of
elements from X × Y satisfying u(x) = v(y). The functions v′, u′ project (x, y) to
x and y, respectively. Similarly, when X,Y, Z are categories and u, v are functors,
we will usually assume that a pullback of categories and functors (that is, a pullback
in the category cat of categories and functors) has been chosen — as can always be
done — so that its objects and morphisms are pairs of objects and pairs of morphisms
from the categories from which it has been constructed. Thus, in the diagram below,
objects of T will be pairs of objects (S,W ) from the categories S and W respectively,
with the property that G(S) = H(W ), and similarly for morphisms of T.

Proposition 5 Let G : S // V oo W : H be a cospan of functors. Suppose that
P : |G/V| // |S2| is a function which, with G, makes the pair (G,P ) a d-lens. Then,
in the pullback square in cat:

S W

T

S

H′

yysssssss T

W

G′

%%KKKKKK

S

V
G %%KKKKKKKS WW

V
Hyyssssss

the functor G′ together with P ′ : |G′/W)| // |T2| defined by

P ′((S,W ), β : G′(S,W ) //W ′) = (P (S,H(β)), β) : (S,W ) // (S′,W ′)

define a d-lens from T to W.

Proof. Note that P ′ makes sense since H(β) is a morphism HG′(S,W ) //H(W ′)
but HG′(S,W ) = GH ′(S,W ) = GS so it is in fact a morphism GS // H(W ′).
Furthermore we denote the codomain of P (S,H(β)) by S′ so that G(S′) = H(W ′)
and thus (S′,W ′) is an object of T. The d-PutInc, d-PutId and d-PutGet conditions
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on (G′, P ′) are satisfied by construction. The d-PutPut condition follows immediately
from d-PutPut for (G,P ).

This means we can talk about the “pullback” of a d-lens along an arbitrary functor,
in particular along the Get of another d-lens. This is similar to the situations described
in [12]. The inverted commas around “pullback” are deliberate because the constructed
d-lens may not be an actual pullback in the category of d-lenses (the category whose
objects are categories and whose arrows S //V are d-lenses from S to V).

Definition 6 Suppose that in

S S′

T

S

H

yysssssss T

S′

K

%%KKKKKK

S

Y
GR %%KKKKKKKS S′S′

Y
FLyyssssssS

X

GL

yysssssss S′

Z

FR

%%KKKKKKK

the functors GL, GR, FL, and FR are the Gets of d-lenses with corresponding Puts
PL, PR, QL, and QR, and T is the pullback of GR and FL. For the “pullback” d-lenses
with Gets H and K, denote the Puts by PH and PK . Then the span composite of the
span of d-lenses (GL, PL), (GR, PR) from X to Y with the span of d-lenses (FL, QL),
(FR, QR) from Y to Z, denoted

((GL, PL), (GR, PR)) ◦ ((FL, QL), (FR, QR))

is the span of d-lenses from X to Z specified as follows. The Gets are GLH and FRK.
The Puts are those for the composite d-lenses (GL, PL)(H,PH) and (FR, QR)(K,PK).

In a sense, the composite just defined corresponds to the ordinary composite of
spans in a category with pullbacks. In the category of categories, the ordinary span
composition of the span GL, GR and with the span FL, FR is the span GLH,FRK.
As usual for such composites, the operation is not associative without introducing an
equivalence relation, which we do later in this paper.

3 Symmetric delta lenses

A symmetric delta lens (called an “fb-lens” below) is between categories, say X and Y.
It consists of a set of synchronizing “corrs” (for “correspondences”), so named because
they make explicit intended correspondences between objects of X and objects of
Y, together with forward and backward “propagation” operations. In the forward
direction, given objects X and Y of X and Y that are synchronized by a corr r and
an arrow x in X with domain X, the propagation returns an arrow y with domain Y
and a corr witnessing the synchronization of the codomains of x and y. This is made
precise in the following definition and is based on definitions in [3] and [4]. We denote
the domain and codomain of an arrow x by d0(x) and d1(x) respectively.

Definition 7 Let X and Y be categories. An fb-lens from X to Y is given by a 4-
tupleM = (δX, δY, f, b) : X←→ Y specified as follows. The data δX, δY are functions
which come equipped with a common domain RXY and form a span of sets

δX : |X| oo RXY
// |Y| : δY
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An element r of RXY is called a corr. For r in RXY, if δX(r) = X, δY(r) = Y
the corr is denoted r : X ↔ Y . The data f and b are operations called forward and
backward propagation:

f : Arr(X)×|X| RXY
//Arr(Y)×|Y| RXY

b : Arr(Y)×|Y| RXY
//Arr(X)×|X| RXY

where the pullbacks ensure that if f(x, r) = (y, r′), we have d0(x) = δX(r), d1(y) =
δY(r′) and similarly for b. We also require that d0(y) = δY(r) and δX(r′) = d1(x),
and the similar equations for b.

Furthermore, we require that both propagations respect both the identities and com-
position in X and Y, so that we have:

r : X ↔ Y implies f(idX , r) = (idY , r) and b(idY , r) = (idX , r)

and
f(x, r) = (y, r′) and f(x′, r′) = (y′, r′′) imply f(x′x, r) = (y′y, r′′)

and
b(y, r) = (x, r′) and b(y′, r′) = (x′, r′′) imply b(y′y, r) = (x′x, r′′)

If f(x, r) = (y, r′) and b(y′, r) = (x′, r′′), we display instances of the propagation
operations as:

X ′ Y ′oo
r′
//____

X

X ′

x
��

X Yoo r // Y

Y ′

y
���
�

f
//

X ′ Y ′oo
r′′

//____

X

X ′

x′
���
�X Yoo r // Y

Y ′

y′

��
b
oo

Examples of fb-lenses may also be found in [3], and here we specify some examples
which we will study further below.

Example 8 For our first example of an fb-lens M we take X = set2 and Y = set.
An interpretation that may help the reader is related to Example 3. We think of an
object X of X as a model state whose function associates elements of the entity set
of Taxis to their location Suburbs. An object of Y is just an entity set of Persons. In
this example we take a synchronizing corr r between an X state X and a Y state Y
to be a function rg : Y // X1 assigning Persons (or Y ) to the Suburbs entity set of
X (which is X1). (The reason for the subscript g will become apparent later.) We
take RXY to be the set of all such corrs and define δX(r) = X and δY(r) = Y when
r : Y //X1.

Next we specify forward and backward propagations f and b. The forward prop-
agation is easier to define and interpret. Suppose that X is an X state specified by
Xf : X0

//X1, the set Y is a Y state and there is a corr r specified by rg : Y //X1.
Let h = (h0, h1) be an (update) arrow from X to Z in X. We formally define
f(h, r) = (idY , h1rg) as in the diagram below:

X0

X1

Xf��
Z0

Z1

Zf ��

X0

Z0

h0

yyrrrrrrrr

X1

Z1

h1

yyrrrrrrrr
YX1

rgoo Y

Y
idYyyrrrrrrrrr

YZ1
h1rg

oo
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That is, if we update the X state, revising Suburbs via h1, then we leave the Persons
alone (idY ), but revise the corr (their locations) by composing rg with h1 — composing
the persons’ locations with the suburbs’ revisions (insertions or merges).

Now we consider the backward propagation. Suppose as before that our Y state
Y is synchronized with an X state X by the corr r with rg : Y //X1, and that Y
is updated by a function y : Y // Y ′ (so if y is an injection we are just adding some
Persons). In the diagram following define the square to be a pushout of sets:

X ′
1 Y ′oo

r′g

X1

X ′
1

x
��

X1 Yoo rg
Y

Y ′

y
��

We formally define b(y, r) = ((idX0
, x), r′g). Consider:

X0

X1

Xf��
X0

X ′
1

xXf ��

X0

X0

idX0

yyrrrrrrrr

X1

X ′
1

x

yyrrrrrrrr
YX1

rgoo Y

Y ′
yyyrrrrrrrrr

Y ′X ′
1

r′g

oo

Note that (idX0 , x) is a set2 arrow from X to the object X ′ specified by the function
xXf : X0

//X ′
1, and r′g correctly specifies a corr r′ from Y ′ to X ′.

The interpretation is that when we update the Persons via y, we need to update the
corr to Persons, but we do that by assigning the new Persons freely to new (unknown)
Suburbs (the pushout — recall the discussion of “InstructorA”, “InstructorB”, etc,
above). The update of the X state makes no change to Taxis but updates Suburbs via
x, and the X state simply augments the Taxis to Suburbs assignment by composing
with x. (Of course, in a real taxi booking system registered persons will, at some
future time, specify what actual suburb they are in when they request a taxi, but
until then their location (corr) is their own unique “unknown” suburb.)

Example 9 The next example of an fb-lens we consider hasX = setsp andY = set2.
An interpretation that may help the reader is related to Example 4. We think of an
object X of X as a model state whose functions associate elements of the entity set
Registrations to elements of the entity sets of Students and Courses. An object of Y
is a model state whose function associates elements of the entity set Courses to their
instructors. A synchronizing corr r between an X state X = (X0, X1, X2, Xf , Xg)
and a Y state Y = (Y2, Y3, Yh) is determined by an identity function r1 from X2 to
Y2. Thus there either is or is not a corr from X to Y and if r is such a corr then of
course δX(r) = X and δY(r) = Y .

We need to specify forward and backward propagations f and b. The backward
propagation is easier. Suppose that Y is a Y state with Yh : Y2

// Y3, X is an X
state with X = (X0, X1, X2, Xf , Xg) and there is a corr r specified by an identity
function from X2 to Y2 (so X2 = Y2, but we will keep them separately named). Let
Z in Y be given by Zf : Z2

// Z3 and let k = (k2, k3) be an arrow from Y to Z.
We also write k2 for the function k2 : Y2 = X2

// Z2. Note that (idX0
, idX1

, k2) is
an X arrow from X to the object X ′ specified by Xf : X0

oo X1
// Z2 : k2Xg, so
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there is a corr r′ from X ′ to Z. Now we formally define b(h, r) = ((idX0
, idX1

, k2), r′).
The interpretation is that an update of an instructor assignment synchronized with
registrations assignments can be updated to a new instructor assignment synchronized
with registrations assignments having unchanged registrations and students entity
sets.

Now consider the forward propagation. Suppose, with notation above, that our X
state X is synchronized with a Y state Y by r with X2 = Y2 and that X is updated by
k = (k0, k1, k2) from X to W = (W0,W1,W2,Wf ,Wg). Writing also k2 : Y2

//W2,
we let the following be a pushout square in set:

Y3 Y ′
3

k′3

//

Y2

Y3

Yh ��

Y2 W2
k2 // W2

Y ′
3

Y ′
h��

with the right vertical arrow defining Y ′, so that there is a corr r′ from W to Y ′

and we can define f(h, r) = ((k2, k
′
3), r′). The interpretation is that when we update

students, registrations and course offerings, we must (as in (Gl.Pl) of Example 4)
freely construct a new instructor assignment.

It is easy to define a composition of fb-lenses.

Definition 10 Let M = (δRX, δ
R
Y, f

R, bR) and M ′ = (δSY, δ
S
Z, f

S , bS) be two fb-lenses
between X and Y and between Y and Z respectively. We define the composite fb-lens
M ′M = (δX, δZ, f, b) as follows. Let TXZ be the pullback

RXY SYZ

TXZ

RXY

δ1
yysssss

TXZ

SYZ

δ2
%%KKKKK

RXY

|Y|δRY
%%KKKKKRXY SYZSYZ

|Y| δSY
yysssss

Let δX = δRXδ1 : TXZ
//X and δZ = δSZδ2. The operations forM

′M are defined as fol-
lows. Denote fR(x, r) = (y, rf ), fS(y, s) = (z, sf ) and bS(z′, s′) = (y′, sb), b

R(y′, r′) =
(x′, rb). Then

f(x, (r, s)) = (z, (rf , sf )) and b(z′, (r′, s′)) = (x′, (rb, sb))

The diagram

X ′ Y ′oo
rf

//____

X

X ′

x
��

X Yoo r // Y

Y ′

y
���
�

fR //
Y ′ Z ′oo

sf
//____

Y

Y ′
���
�Y Zoo s // Z

Z ′

z
���
�

fS //

shows that the arities are correct for f in the forward direction. That is, we have

f : Arr(X)×|X| TXZ
//Arr(Z)×|Z| TXZ

and similarly
b : Arr(Z)×|Z| TXZ

//Arr(X)×|X| TXZ

It is easy to show that the f and b just defined respect composition and identities
in X and Z and we record:
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Proposition 11 The composite M ′M just defined is an fb-lens from X to Z.

We note that because it is defined using a pullback, this construction of the com-
posite of a pair of fb-lenses is not associative, and when we later define a category of
fb-lenses the arrows will be equivalence classes of fb-lenses and the composition will
then be associative.

Next we define two constructions relating fb-lenses with spans of d-lenses.
For the first construction, we begin with an fb-lens M = (δV, δW, f, b) from V to

W with
δV : |V| oo R // |W| : δW

Now construct a span of d-lenses LM : V oo S //W : KM from V to W. The
first step is to define the head S of the span. The set of objects of S is the set R of
corrs of M . The morphisms of S are defined as follows:
For objects (corrs) r and r′, S(r, r′) = {(v, w) | d0v = δV(r), d1v = δV(r′), d0w =
δW(r), d1v = δW(r′)} (where we write, as usual, S(r, r′) for the set of arrows of S
from r to r′). Thus an arrow may be thought of as a formal square:

V ′ W ′oo
r′
//

V

V ′

v
��

V Woo r // W

W ′

w
��

Composition is inherited from composition in V and W at boundaries, or more pre-
cisely, for (v, w) ∈ S(r, r′) and (v′, w′) ∈ S(r′, r′′) we define:

(v′, w′)(v, w) = (v′v, w′w)

in S(r, r′′). The identities are pairs of identities. It is easy to see that S is a category.
Next we define the d-lens LM to be the pair (GL, PL) where we define GL : S //V

on objects by δV, and on arrows by projection, that is GL(v, w) = v. The Put for
LM , PL : |GL/V| // |S2|, is defined on objects (r, v : GL(r) // V ′) of the category
GL/V by PL(r, v) = (v, π0f(v, r)) which is indeed an arrow of S from r to π1f(v, r).
(As is usual practice, we write π0 and π1 for the projection from any pair onto its
first and second factors respectively.) We define KM = (GK , PK) similarly.

Lemma 12 LM = (GL, PL) and KM = (GK , PK) is a span of d-lenses.

Proof. GL and GK are evidently functorial. We need to show that PL and PK
satisfy (i)-(iv) of Definition 1. These follow immediately from the properties of the
fb-lens M .

Example 13 We apply the construction of LM and KM to Example 8. Recall the
fb-lens M from X = set2 to Y = set. An object of the head S of the constructed
span of d-lenses is a corr r from an X object X to a Y object Y . Such an r is
specified by the object X and a function rg : Y // X1. Thus it is two functions,
Xf and rg with common codomain X1. Thus, a corr for M is exactly the same
thing as an object of setcs from Example 3. We exploit this identity of objects of
S and setcs by writing r = (Xf , rg). Suppose X ′ is specified by X ′

0
// X ′

1 and r′

by r′g : Y ′ // X ′
1. Then an arrow of S from r = (Xf , rg) to r′ = (X ′

f , r
′
g) is a pair
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consisting of an X arrow x = (x0, x1) : X //X ′ in set2, and a Y arrow y : Y // Y ′

in set. This makes the definitions of GL and GK obvious. For example, on objects
we have GL(r) = GL(Xf , rg) = X. Notice that we do not require that x1rg = r′gy so
S has “more” arrows than setcs.

Next we define PL. Consider an object (r, h : GL(r) // Z) of GL/X where Z
is specified by Zf : Z0

// Z1 and h = (h0 : X0
// Z0, h1 : X1

// Z1). Applying
the formula above defines PL(r, h) to be the arrow (h, idY ) of S from r to the object
r′ = (Zf , h1rg) of S. Consider again the first diagram from Example 8

X0

X1

Xf��
Z0

Z1

Zf ��

X0

Z0

h0

yyrrrrrrrr

X1

Z1

h1

yyrrrrrrrr
YX1

rgoo Y

Y
idYyyrrrrrrrrr

YZ1
h1rg

oo

The domain and codomain corrs of PL(r, h) are (Xf , rg) and (Zf , h1rg) respectively,
while the arrow between them is (h, idY ).

Finally, we define PK . For an object (r, y : GK(r) // Y ′) of GK/Y, applying
the formula to define PK(r, y) uses the pushout in the definition of b(y, r) above in
Example 8. Thus, PK(r, y) is the arrow ((idX0 , x), y) of S from r to r′ = (xXf , r

′
g).

Example 14 Returning to Example 9, we recall that there is a corr r with boundaries
X and Y if and only if X2 = Y2, so the objects of the head S of the constructed span
are exactly objects of setscp. In this case the arrows in S from r to r′ are also the
same thing as arrows of setscp. The two asymmetric lenses we construct are exactly
those first seen in Example 4.

For the construction in the other direction, we begin with a span of d-lenses. Let
L = (GL, PL) where GL : S //V and K = (GK , PK) where GK : S //W be such
a span from V to W.

Construct the fb-lens ML,K = (δV, δW, f, b) as follows:

– the corrs are RV,W = |S| with δVS = GLS and δWS = GKS;

– forward propagation f for v : V // V ′ and S : V↔W is defined by f(v, S) =
(w, S′) where w = GK(PL(S, v)) and S′ is the codomain of PL(S, v);

– backward propagation b is defined analogously.

Lemma 15 ML,K is an fb-lens.

Proof. Identity and compositionality for ML,K follow from functoriality of the Gets
for L and K and the d-PutId and d-PutPut equations in Definition 1.

Example 16 As the reader will have guessed by now, the Put Pdg for an asymmetric
d-lens (Gdg, Pdg) where Gdg : setcs // set involves a pushout. Consider the arrow of
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setcs below in which the bottom square is a pushout:

X1 Y1
h1

//

X0

X1

Xf ��

X0 X0

idX0 // X0

Y1

h1Xf��

X2 Y
h
//

X1

X2

OO
Xg

X1 Y1
// Y1

Y

OO
Yg

We define Pdg(X,h) to be the setcs arrow in the diagram. That is Pdg(X,h) =
(idX0

, h1, h). It is now easy to check that this makes (Gdg, Ppd) an asymmetric d-lens,
and with (Gf , Pf ) we have a span from set2 to set. The forward and backward
propagations in the construction applied to this span are exactly those in Example 8.

The two constructions between spans of d-lenses and fb-lenses are closely related.
Indeed, one composite of the two constructions is actually the identity.

Proposition 17 For any fb-lens M , with the notation of the constructions above

M = MLM ,KM

Proof. By inspection, the corrs and δ’s of MLM ,KM
are those of M . Further, it is

easy to see that, for example, the forward propagation ofMLM ,KM
is identical to that

of M .

However, the other composite of the constructions above, namely the span of d-
lenses LML.K

,KML.K
is not equal to the original span L,K (because the arrows of

the original S have been replaced by the formal squares described above). We have
yet to consider the appropriate equivalence for spans of d-lenses, and we do so now.
We will see that LML.K

,KML.K
is indeed equivalent to L,K.

4 Two equivalence relations

Our first equivalence relation is on spans of d-lenses from X to Y.

Definition 18 Suppose that in the diagram

X Y

S

X

(GL,PL)

tthhhhhhhhhhhh S

Y

(GR,PR)

**VVVVVVVVVVVV

X

S′

jj

(G′
L,P

′
L) VVVVVVVVVVVVX YY

S′

44

(G′
R,P

′
R)hhhhhhhhhhhh

S

S′

Φ

��

the top and bottom spans are spans of d-lenses and Φ is a functor. Then Φ is said to
satisfy conditions (E) if:

(1) G′
LΦ = GL and G′

RΦ = GR,

(2) Φ is surjective on objects, and
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(3) whenever ΦS = S′, we have both

P ′
L(S′, G′

LS
′ α //X) = ΦPL(S,GLS

α //X)

and

P ′
R(S′, G′

RS
′ β // Y ) = ΦPR(S,GRS

β // Y ).

By (1) any such Φ is a “2-cell” (a morphism of spans) in spans of categories
between the two X to Y spans GL, GR and G′

L, G
′
R. Moreover, Φ is required both

to be surjective on objects and also to satisfy (3), a condition which expresses a
compatibility with the Puts.

Notice that the identity functor on S satisfies conditions (E), and that the identity
functor may be taken as a Φ between the span of asymmetric d-lenses defined in
Example 4 and that constructed from the fb-lens described in Example 9.

Example 19 Our considerations in Example 13 provide a less trivial example of a
functor satisfying conditions (E). As noted there, setcs has the same objects as the
category called S in the example, but fewer arrows. Indeed, because identities and
composition in both setcs and S are defined the same way, there is an evidently
identity on objects inclusion functor Φ : setcs // S. Now setcs and S are the heads
of spans of asymmetric d-lenses Their left legs were called, respectively, (Gf , Pf )
and (GL, PL) in the examples above, while the right legs were called, respectively,
(Gdg, Pdg) and (GK , PK). Noting that Φ is certainly surjective on objects, we leave
to the reader the straightforward verification of the other two conditions (E).

Definition 20 Let ≡Sp be the equivalence relation on spans of d-lenses from X to Y
which is generated by functors Φ satisfying (E).

To simplify describing ≡Sp we now prove some properties of functors satisfying
conditions (E).

Lemma 21 A composite of d-lens span morphisms satisfying (E) also satisfies (E).

Proof. Consider spans of d-lenses (GL, PL), (GR, PR) and (G′
L, P

′
L), (G′

R, P
′
R) as

above, and a third such span

X oo
(G′′

L,P
′′
L )

S′′ (G′′
R,P

′′
R) //Y.

Suppose Φ : S //S′ and Φ′ : S′ //S′′ satisfy (E). Properties (1) and (2) for Φ′Φ are
immediate. We show the P ′

L part of property (3) for Φ′Φ. Suppose Φ′ΦS = S′′ and
consider P ′′

L(S′′, G′′
LS

′ α //X). By (E) for Φ and Φ′, since Φ′(Φ(S)) = S′′, we have
P ′′
L(S′′, G′′

LS
′′ α // X) = Φ′P ′

L(Φ(S), G′
LΦ(S)

α // X) = Φ′ΦPL(S,GLS
α // X) as

required.

Suppose that Φ satisfies (E). When ΦS = S′ it follows that GLS = G′
LΦS = G′

LS
′,

which we will use below. Note that if Φ were the Get of a d-lens (although it need
not be) then it would be surjective on arrows by the d-PutGet equation, but not
necessarily surjective on hom sets.
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Lemma 22 Let (GL, PL), (GR, PR), (G′
L, P

′
L), (G′

R, P
′
R) and (G′′

L, P
′′
L), (G′′

R, P
′′
R) be

spans of d-lenses as above. Let Φ : S // S′ oo S′′ : Φ′ be the functors in a cospan of
span morphisms satisfying (E). Let

S S′′

T

S

Ψ

yysssssss T

S′′

Ψ′

%%KKKKKK

S

S′Φ %%KKKKKKKS S′′S′′

S′ Φ′yyssssss

be a pullback in cat. Then there is a span of d-lenses X oo
(GT

L ,P
T
L )

T
(GT

R,P
T
R ) //Y

defined by GTL = GLΨ and

PTL ((S, S′′), GTL(S, S′′)
α //X) = (S

PL(S,α) //W,S′′ P ′′
L (S′′,α) //W ′′)

and similarly for (GTR, P
T
R ). Moreover, Ψ and Ψ′ satisfy (E).

Proof. The first point is that (GTL, P
T
L ) and (GTR, P

T
R ) actually are d-lenses. We need

to know that PTL is well-defined. Since (S, S′′) is an object of the pullback T, we know
that Φ(S) = Φ′(S′′) = S′, say. We want PTL ((S, S′′), GTL(S, S′′)

α //X) to be an arrow

of T, so we need to show that Φ(S
PL(S,α) //W ) is equal to Φ′(S′′ P ′′

L (S′′,α) //W ′′).
However both are equal to P ′

L(S′, α) since both Φ and Φ′ satisfy (E). Thus further-
more, (W,W ′′) is an object of T and using this for d-PutPut each of the required
d-lens equations is easy to establish.

Next, we show that Ψ and Ψ′ satisfy (E). First of all, the Gets commute by
definition. Moreover, both Ψ and Ψ′ are surjective on objects because Φ and Φ′ are
so.

It remains to check property (3) for Ψ and Ψ′. We need to show that whenever
Ψ(S, S′′) = S, we have

PL(S,GLS
α // U) = Ψ(PTL ((S, S′′), GTL(S, S′′)

α // U))

and this follows immediately from the definitions of Ψ and PTL . (Notice that for S =

Ψ(S, S′′) we have GLS = G′
LΦS = G′

LΦ′(S′′) = G′′
L(S′′) and so P ′′

L(S′′, G′′
LS

′′ α //U)
is well-defined.) Similarly Ψ′ satisfies (3).

A “zig-zag” of arrows in a category is any string of arrows in which neighbouring
arrows in the string have a common codomain (they are connected head to head) or
a common domain (they are connected tail to tail).

Corollary 23 Zig-zags of span morphisms satisfying (E) can be reduced, using pull-
back and composition, to spans of span morphisms satisfying (E).

Thus any proof that two spans of d-lenses are ≡Sp equivalent can be reduced to a
single span Ψ,Ψ′ of span morphisms satisfying (E).

The second equivalence relation we introduce is on the set of fb-lenses from X
to Y. Recall that Diskin et al [4] defined symmetric delta lenses (our fb-lenses),
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but they did not consider composing them. Like Hofmann et al [8] they would find
that they need to consider equivalence classes of their symmetric delta lenses in order
for the appropriate composition to be associative. Also like Hofmann et al, there is
a need for an equivalence among their lenses to eliminate artificial differences. In
fact, defining an equivalence to restore associativity is easy. Choosing the correct
equivalence to eliminate the artificial differences is more delicate. And what do we
mean by “artificial differences”? Symmetric lenses of various kinds include hidden data
— the complements of Hofmann et al and the corrs of Diskin et al are examples. The
hidden data are important for checking and maintaining consistency, but different
arrangements of hidden data with the same overall effect should not be counted as
different symmetric lenses.

We now introduce such a relation on the set of fb-lenses from X to Y.

Definition 24 Let L = (δX, δY, f, b) and L′ = (δ′X, δ
′
Y, f

′, b′) be two fb-lenses (from
X to Y) with corrs RXY and R′

XY. We say L ≡fb L
′ if and only if there is a relation

σ from RXY to R′
XY with the following properties:

1. σ is compatible with the δ’s, i.e. rσr′ implies δXr = δ′Xr
′ and δYr = δ′Yr

′

2. σ is total in both directions, i.e. for all r in RXY, there is r′ in R′
XY with rσr′

and conversely.

3. for all r, r′ and for x an arrow of X, if rσr′ and δXr is the domain of x then
the first components of f(x, r) and f ′(x, r′) are equal and the second components
are σ related, i.e. π0f(x, r) = π0f

′(x, r′) and π1f(x, r)σπ1f
′(x, r′).

4. the corresponding condition for b, i.e. for all r, r′ and for y an arrow of Y, if rσr′
and δXr is the domain of x then π0b(y, r) = π0b

′(y, r′) and π1b(y, r)σπ1b
′(y, r′).

Lemma 25 The relation ≡fb is an equivalence relation.

Proof. For reflexivity take σ to be the identity relation; for symmetry take the
opposite relation for σ; for transitivity, the composite relation is easily seen to satisfy
conditions 1. to 4.

Lemma 26 The equivalence relation ≡fb is generated by those relations σ from Def-
inition 24 which are surjective functions.

Proof. To see that ≡fb is generated by such surjections, consider a relation σ wit-
nessing L ≡fb L

′ where L = (δX, δY, f, b) and L′ = (δ′X, δ
′
Y, f

′, b′) are fb-lenses (from
X to Y) with corrs RXY and R′

XY. Let the span tabulating σ be

ϕ : RXY
oo Rσ //R′

XY : ϕ′

in which ϕ and ϕ′ are surjective functions since σ is total on both sides. We construct
an fb-lens Lσ = (δσX, δ

σ
Y, fσ, bσ) with corrs Rσ as follows. The δ’s are composites:

δσX = δXϕ = δ′Xϕ
′, δσY = δYϕ = δ′Yϕ

′. We next define the operations. First, we
define fσ(x, s) to have first component π0fσ(x, s) = π0f(x, ϕ(s)) = π0f

′(x, ϕ′(s)). Now
π1f(x, ϕ(s)) and π1f

′(x, ϕ′(s)) are σ related, so there is an s′ in Rσ, necessarily unique,
such that ϕ(s′) = π1f(x, ϕ(s)) and ϕ′(s′) = π1f

′(x, ϕ′(s)). We define fσ(x, s) to have
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second component s′. Similarly for b. The operations just defined respect composition
and identities in X and Y since f and b do.

Notice that the surjective functions ϕ and ϕ′ now witness L ≡fb Lσ ≡fb L
′, which

completes the proof.

Proposition 27 Suppose that M ≡fb M
′ are fb-lenses from X to Y equivalent by

a generator for ≡fb, i.e. a surjection ϕ : RXY
// R′

XY. Then (LM ,KM ) ≡Sp
(LM ′ ,KM ′) as spans of d-lenses from X to Y.

Proof. We first define Φ : S // S′ on objects by ϕ. Notice that Φ is surjective on
objects since ϕ is a surjection. To define Φ on arrows of S, consider an arrow

X ′ Y ′oo
r′
//

X

X ′

x
��

X Yoo r // Y

Y ′

y
��

of S. Its image under Φ is defined to be the arrow

X ′ Y ′oo
ϕ(r′)

//

X

X ′

x
��

X Yoo ϕ(r) // Y

Y ′

y
��

which is an arrow of S′ since ϕ is compatible with the δs. This Φ is evidently functorial
and commutes with the Gets. It remains to show that Φ satisfies condition (3) of (E),
that is, whenever Φ(r) = r′, P ′

L(r′, G′
Lr

′ x // X ′) = ΦPL(r,GLr
x // X ′) (with the

similar equation holding for P ′
K).

Now, when r′ = Φ(r), we have

P ′
L(r′, x) = (x, π0f

′(x, r′))

= (x, π0f(x, r))

= Φ(x, π0f(x, r)) definition of Φ

= ΦPL(r, x)

as required. Similarly for P ′
K .

Proposition 28 Suppose that (L,K) ≡Sp (L′,K ′) as spans of d-lenses from X to
Y are made equivalent by a generator for ≡Sp, i.e. a functor Φ : S // S′ satisfying
conditions (E). Then ML,K ≡fb ML′,K′ as fb-lenses from X to Y.

Proof. Let ϕ be the object function of Φ. Since Φ commutes with the Gets, ϕ is
compatible with the δ’s. Furthermore, ϕ is surjective.
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We need to show that ϕ satisfies the remaining two conditions in Definition 24.
Suppose Φ(S) = S′ and GL(S) is the domain of x. Then

π0f(x, S) = GKPL(x, S)

= G′
KΦPL(x, S)

= G′
KP

′
L(x, S′)

= π0f
′(x, S′)

and

ϕπ1f(x, S) = ϕd1PL(x, S)

= d1ΦPL(x, S)

= d1P
′
L(x, S′)

= π1f
′(x, S′).

That establishes the third condition. Similarly for the fourth condition involving b
and b′.

There is another way to understand conditions (E) which may appeal to some
readers, and which confirms that the conditions (E) are not ad hoc. We remind the
reader that cat/X is the “slice” category whose objects are functors with codomain
X and an arrow from C //X to C′ //X is a functor C //C′ making the evident
triangle commute. We recall a result from [11]. We showed there that an (asymmet-
ric) d-lens is the same thing as an algebra (satisfying an additional condition) for a
particular semi-monad R0 on cat/X. (Recall that a semi-monad is a endofunctor
and a “multiplication” natural transformation which together satisfy the associativity
condition for a monad. Notice that, unlike a monad, a semi-monad has no specified
“unit” natural transformation.)

Viewed as an algebra for the semi-monad R0, a d-lens is a pair consisting of a
functor part G : S // X (the object G of cat/X) and an algebra structure P :
R0(G) // G. A span of d-lenses is a pair of algebras whose functor parts have a
common domain S. For two such spans as above, a functor Φ : S // S′ between
their heads satisfying conditions (E) is exactly the same thing as a functor which is
simultaneously a surjective on objects algebra homomorphism between the left leg
d-lenses and the right leg d-lenses. (We remind the reader that a homomorphism
between algebras, say (A,α) and (B, β) for a semi-monad T , or indeed a monad T ,
on a category C, is a morphism f : A //B such that βTf = fα.)

Proposition 29 Suppose that (GL, PL), (GR, PR) and (G′
L, P

′
L), (G′

R, P
′
R) are spans

of d-lenses as in Definition 18. A functor Φ from S to S′ satisfies conditions (E) if
and only if it defines a surjective on objects R0 semi-monad homomorphism between
both (GL, PL) and (G′

L, P
′
L), and between (GR, PR) and (G′

R, P
′
R).

Proof. To provide a complete proof we would need to detail the structure of the
semi-monad R0 in [11] and that would take us too far afield. Instead we provide a
brief outline.

We begin by noting that the first two of conditions (E) are satisfied if and only if Φ
defines a surjective on objects morphism between GL and G′

L in cat/X (respectively
between GR and G′

R in cat/Y).

Journal of Object Technology, 2016

http://www.jot.fm/


22 · Michael Johnson and Robert Rosebrugh

The rest of the proof shows that the R0 semi-monad algebra structures on GL and
G′
L (respectively on GR and G′

R) commute with Φ and R0(Φ) if and only if Φ satisfies
the third of conditions (E).

This result could be used to provide different and sometimes shorter proofs of
several of the propositions above. For example, Lemma 21 amounts to the easy
fact that surjective on objects algebra homomorphisms compose. In other cases, the
results in terms of algebra homomorphisms require using more specialized knowledge
of categories of algebras. We have restricted ourselves to providing more direct and
elementary proofs in terms of conditions (E).

5 Two categories of lenses

The collections of lenses so far discussed do not form categories since their defined
composites are not associative. We are going to use the equivalence relations of the
previous section to resolve this, but first we show that the equivalence relations respect
the composites defined above, that is they are “congruences”.

Proposition 30 Suppose that M = (δX, δY, f
R, bR), M ′ = (δ′X, δ

′
Y, f

R′
, bR

′
) and

N = (δSY, δZ, f
S , bS) are fb-lenses (see the diagram below in which RXY, R′

XY and
SYZ are the corresponding corrs). Further, suppose ϕ : RXY

//R′
XY is a generator

of ≡fb. Thus M ≡fb M
′. Then NM ≡fb NM

′.

Proof. The composite NM has as corrs the pullback TXZ as in Definition 10, and
similarly NM ′ has corrs T ′

XZ .

|X| |Y|

RXY

|X|

δX

����������
RXY

|Y|

δY

��????????

|X|

R′
XY

__

δ′X ???????
|X| |Y||Y|

R′
XY

??

δ′Y�������
SYZ|Y|

δSYoo SYZ |Z|δZ //

TXZRXY
δ1oo

T ′
XZR′

XY
δ′1

oo

TXZ

SYZ

δ2

��????????

T ′
XZ

SYZ

δ′2

??��������

RXY

R′
XY

ϕ

��

In order to show that NM ≡fb NM
′, we construct ϕ′ : TXZ

// T ′
XZ. This is

straightforward using the universal property of the pullback T ′
XZ, since δ

′
Yϕδ1 = δSYδ2.

To finish, we need to check that ϕ′ satisfies the four requirements of Definition 24.
Compatibility with δs is easy when we note that ϕδ1 = δ′1ϕ

′ and δ′2ϕ′ = δ2.
The function ϕ′ is a total relation in both directions since it is surjective. To see

that ϕ′ is surjective, note that any element of T ′
XZ can be thought of as a pair (r′, s)

compatible over |Y|, and since ϕ is surjective, there exists an r in RXY, necessarily
compatible with s, such that ϕ′(r, s) = (ϕ(r), s) = (r′, s).

Let f be the forward propagation of the composite NM , as defined in Definition 10,
and let f ′ be the forward propagation of the composite NM ′. Suppose r′ = ϕ(r) and
thus (r′, s) = ϕ′(r, s). We need to show that the first components of f(x, (r, s)) and
f ′(x, (r′, s)) are equal and that ϕ′ takes the second component of f(x, (r, s)) to the
second component of f ′(x, (r′, s)).
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The first component of f(x, (r, s)) is π0f
S(π0f

R(x, r), s), while the first component
of f ′(x, (r′, s)) is π0f

S(π0f
R′

(x, r′), s), and these are equal since ϕ is a generator of ≡fb

implies π0f
R(x, r) = π0f

R′
(x, ϕ(r)).

The second component of f(x, (r, s)) is (π1f
R(x, r), π1f

S(π0f
R(x, r), s)), while the

second component of f ′(x, (r′, s)) is (π1f
R′

(x, r′), π1f
S(π0f

R′
(x, r′), s)), and ϕ′ of the

first equals the second since, as before, π0f
R(x, r) = π0f

R′
(x, ϕ(r)).

The same arguments work for b and b′.

Proposition 31 Suppose that M = (δX, δ
R
Y, f

R, bR), N = (δY, δZ, f
S , bS) and N ′ =

(δ′Y, δ
′
Z, f

S′
, bS

′
) are fb-lenses (see the diagram below in which RXY, SYZ and S′

YZ

are the corresponding corrs). Further, suppose ϕ : SYZ
//S′

YZ is a generator of ≡fb.
Thus N ≡fb N

′. Then NM ≡fb N
′M .

Proof. The composite NM has as corrs the pullback TXZ as in Definition 10, and
similarly N ′M has corrs T ′

XZ .

|Y| |Z|

SYZ

|Y|

δY

����������
SYZ

|Z|

δZ

��????????

|Y|

S′
YZ

__

δ′Y ???????
|Y| |Z||Z|

S′
YZ

??

δ′Z�������
RXY |Y|

δRY //RXY|X| δXoo

TXZ SYZ
δ2 //

T ′
XZ S′

YZ
δ′2

//

TXZ

RXY

δ1

����������

T ′
XZ

RXY

δ′1

__????????

SYZ

S′
YZ

ϕ

��

The proof follows the same argument as in the previous proposition.

Theorem 32 Equivalence classes for ≡fb are the arrows of a category, fbDLens.

Proof. We first note that Propositions 30 and 31 ensure that composition is well-
defined independently of choice of representative. There is an identity fb-lens with
obvious structure which acts as an identity for the composition. It remains only to
note that associativity follows by standard re-bracketing of iterated pullbacks. The
re-bracketing function is the ϕ for an ≡fb equivalence.

Proposition 33 Suppose that (GL, PL), (GR, PR), (G′
L, P

′
L), (G′

R, P
′
R), (FL, QL),

and (FR, QR) are d-lenses whose Gets are shown in the diagram below. Further,
suppose Φ : S // S′ is a functor satisfying properties (E). Thus the span (GL, PL),
(GR, PR) is ≡Sp to the span (G′

L, P
′
L), (G′

R, P
′
R). Then the two possible span compos-

ites are equivalent, that is

((GL, PL), (GR, PR))◦((FL, QL), (FR, QR))

≡Sp ((G′
L, P

′
L), (G′

R, P
′
R)) ◦ ((FL, QL), (FR, QR))
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Proof. The top composite span of d-lenses in the diagram below has head T, the
pullback of GR and FL (see Definition 6), similarly the pullback T′ is the head of the
bottom span composite.

X Y

S

X

GL

����������
S

Y

GR

��????????

X

S′

__

G′
L ????????X YY

S′

??

G′
R��������

RY
FLoo R Z

FR //

TS
Hoo

T′S′
H′

oo

T

R

K

��????????

T′

R

K′

??��������

S

S′

Φ

��

In order to show the claimed equivalence, we construct a functor Φ′ : T // T′.
Since G′

RΦH = FLK, the universal property of the pullback T′ can be used to define
Φ′.

Since T and T′ are pullbacks of functors, their objects can be taken to be pairs of
objects from S and R, respectively S′ and R. Similarly, their arrows can be taken to
be pairs. Also H and K, respectively H ′ and K ′ can be taken to be projections. We
can now explicitly describe the action of Φ′ on an arrow of T as Φ′(t0, t1) = (Φt0, t1).

As in Definition 6, we denote the Puts of the lenses whose Gets are H and K by
PH and PK . Similarly for H ′ and K ′. Denote the composite lens (GL, PL)(H,PH)
by (G,P ) and similarly let (G′, P ′) = (G′

L, P
′
L)(H ′, PH′), (F,Q) = (FR, QR)(K,PK)

and (F ′, Q′) = (FR, QR)(K ′, PK′).
We need to show that Φ′ satisfies the conditions (E). By its construction Φ′ com-

mutes with the Gets, and is surjective on objects.
It remains to show that whenever Φ(S,R) = (S′, R′) (which implies that R = R′

and Φ(S) = S′) we have

P ′((S′, R′), G′
LH

′(S′, R′)
α //X ′) = Φ′P ((S,R), GLH(S,R)

α //X ′)

and

Q′((S′, R′), FRK
′(S′, R′)

γ // Z ′) = Φ′Q((S,R), FRK(S,R)
γ // Z ′)

We begin by proving the first of the two equations immediately above. We know that
whenever Φ(S) = S′, P ′

L(S′, G′
L(S′)

α //X ′) = ΦPL(S,GL(S)
α //X ′). We calculate

P ′((S′, R′),G′
LH

′(S′, R′)
α //X ′) = P ′((S′, R′), G′

L(S′)
α //X ′)

= PH′((S′, R′), P ′
L(S′, G′

L(S′)
α //X ′))

= (P ′
L(S′, G′

L(S′)
α //X ′), QL(R′, G′

RP
′
L(S′, G′

L(S′)
α //X ′)))

= (ΦPL(S,GL(S)
α //X ′), QL(R,G′

RΦPL(S,GL(S)
α //X ′)))

= Φ′(PL(S,GL(S)
α //X ′), QL(R,GRPL(S,GL(S)

α //X ′)))

= Φ′(PH((S,R), PL(S,GL(S)
α //X ′)))

= Φ′P ((S,R), GLH(S,R)
α //X ′)

The first step is merely that H ′ is a projection; the second is the definition of P ′

as the Put of the composite lens whose Get is G′
LH

′; the third is the definition of
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PH′ (see Proposition 5); the fourth uses R′ = R and the fact stated just before the
calculation; the fifth follows since Φ commutes with GR and G′

R and by the definition
of Φ′; the sixth is the definition of PH (see Proposition 5); the last is the definition
of P as the Put of the composite lens whose Get is GLH.

To establish the second equation, suppose Φ′(S,R) = (S′, R′), whence R = R′

and Φ(S) = S′, and so because Φ satisfies conditions (E), we have

P ′
R(S′, G′

R(S′)
β // Y ′) = ΦPR(S,GR(S)

β // Y ′)

and since GR(S) = G′
RΦ(S) = G′

R(S′), the right hand side of this can be written as

ΦPR(S,G′
R(S′)

β // Y ′). We calculate

Q′((S′, R′),FRK
′(S′, R′)

γ // Z ′) = PK′((S′, R′), QR(R′, FR(R′)
γ // Z ′))

= (P ′
R(S′, FLQR(R′, FR(R′)

γ // Z ′)), QR(R′, FR(R′)
γ // Z ′)).

Before continuing the calculation, we simplify by defining β by (G′
R(S′)

β // Y ′) =

FLQR(R′, FR(R′)
γ //Z ′) = FLQR(R,FR(R)

γ //Z ′) after noting that G′
R(S′) is the

domain of FLQR(R′, FR(R′)
γ // Z ′) since the T ′ pullback square commutes. Now,

continuing the calculation above:

= (P ′
R(S′, G′

R(S′)
β // Y ′, QR(R′, FR(R′)

γ // Z ′)))

= (ΦPR(S,GR(S)
β // Y ′, QR(R′, FR(R′)

γ // Z ′)))

= (ΦPR(S,G′
R(S′)

β // Y ′, QR(R,FR(R)
γ // Z ′)))

= Φ′(PR(S, FLQR(R,FR(R)
γ // Z ′), QR(R,FR(R)

γ // Z ′)))

= Φ′PK((S,R), QR(R,FR(R)
γ // Z ′))

= Φ′Q((S,R), FRK(S,R)
γ // Z ′)

Starting at the beginning of the calculation (before the simplification) the first step
uses that K ′ is a projection and the definition of Q′ as the Put of the composite lens
whose Get is FRK ′; the second is the definition of PK′ (see Proposition 5); the third
is the definition of β above; the fourth uses the fact displayed before the calculation;
the fifth uses R = R′ and the note just before the calculation; the sixth uses the
definitions of Φ′ and β; the seventh is the definition of PK (see Proposition 5); the
last is the definition of Q as the Put of the composite lens whose Get is FRK.

Like Propositions 30 and 31, there is a reflected version of Proposition 33, showing
that equivalent spans of d-lenses when composed on the left with another span of d-
lenses are equivalent.

Proposition 34 In notation analogous to Proposition 33,

((GL, PL), (GR, PR))◦((FL, QL), (FR, QR))

≡Sp ((GL, PL), (GR, PR)) ◦ ((F ′
L, Q

′
L), (F ′

R, Q
′
R)).
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Theorem 35 Equivalence classes for ≡Sp are the arrows of a category, denoted
SpDLens.

Proof. We first note that Proposition 33 and Proposition 34 ensure that composition
is well-defined independently of choice of representative. There is a span of identity
d-lenses which acts as the identity for the composition. Again, associativity follows by
standard re-bracketing of iterated pullbacks of categories. The re-bracketing functor
is the Φ for an ≡Sp equivalence.

6 An isomorphism of categories of lenses

Now that we have the categories fbDLens and SpDLens, we can extend the con-
structions of Section 3 to functors on them.

Definition 36 For the ≡fb equivalence class [M ] of an fb-lens M , let A([M ]) be the
≡Sp equivalence class of, in the notation of Lemma 12, the span LM ,KM .

Proposition 37 A is the arrow function of a functor, also denoted A, from fbDLens
to SpDLens.

Proof. We need to show that A preserves identities and composition.
For the former denote by MX the identity fb-lens on a category X. We begin by

noticing that the category Xp at the head of the span of d-lenses constructed from
MX has as its objects exactly those of X. Its arrows from X to X ′ are arbitrary pairs
of X arrows, both of which are from X to X ′. Define the functor Φ from the head
X of the identity span on X to Xp by sending an arrow x of X to the pair of arrows
(x, x). This functor Φ satisfies conditions (E), and so A([MX]) = [X] as required.

Let M and M ′ be a composable pair of fb-lenses from X to Y and Y to Z
respectively. The composite fb-lens M ′M has as corrs compatible pairs of corrs, one
from M and one from M ′ (see Definition 10). The head S of the span of d-lenses
constructed from M ′M has as objects compatible pairs of corrs and as arrows from
compatible corrs (r1, r2) to compatible corrs (r′1, r

′
2), pairs of arrows, one from X and

one from Z as shown

X ′ Y ′oo
r′1

//

X

X ′

x
��

X Yoo r1 // Y

Y ′Y ′ Z ′oo
r′2

//

Y

Y ′

Y Zoo r2 // Z

Z ′

z
��

On the other hand, the span composite of the spans constructed from M and M ′ has
as head a category T whose objects are pairs of compatible corrs from M and M ′

respectively. The arrows of T are triples of arrows (x, y, z) as shown

X ′ Y ′oo
r′1

//

X

X ′

x
��

X Yoo r1 // Y

Y ′

y
��
Y ′ Z ′oo

r′2

//

Y

Y ′
��

Y Zoo r2 // Z

Z ′

z
��
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Define the functor Φ from T to S by sending the triple of arrows (x, y, z) to the
pair of arrows (x, z). This functor Φ satisfies conditions (E), and so A([M ′M ]) =
A([M ′])A([M ]) as required.

Definition 38 For the ≡Sp equivalence class [L,K] of a span of d-lenses L,K, let
S([L,K]) be the ≡fb equivalence class of, in the notation of Lemma 15, the fb-lens
ML,K .

Proposition 39 S is the arrow function of a functor, also denoted S, from SpDLens
to fbDLens.

Proof. We need to show that S preserves identities and composition.
Unlike the previous proof, the preservation of identities and composition is “on the

nose”. That is, the construction applied to the identity gives precisely the identity
fb-lens. Moreover, with judicious choice of pullbacks, the construction applied to
the composite of two composable spans of d-lenses is the composite of the fb-lenses
constructed from each of the spans.

Thus S preserves the equivalence class of the identity span and

S([L1,K1][L2,K2]) = S([L1,K1])S([L2,K2]).

Theorem 40 The functors A and S are an isomorphism of categories SpDLens ∼=
fbDLens.

Proof. We need to show that the composites AS and SA are identities. Recall
first that both A and S have identity functions as object functions. Considering the
arrows, Proposition 17 shows that SA is the identity functor. We now consider AS.

For a span L,K of d-lenses between X and Y, using the notation of Lemmas 15
and 12, AS([L,K]) = [LML,K

,KML,K
], so we consider the span LML,K

,KML,K
of d-

lenses whose Gets and Puts we denote by FL, QL and FK , QK respectively. The head
of the span is a category we denote SL,K whose objects are the same as the objects of
S, the head of the span L,K. We define an identity on objects functor Φ : S //SL,K
on arrows by Φ(s) = (GL(s), GK(s)) (recalling that arrows of SL,K are pairs of arrows
from X and Y, respectively). We finish by showing that Φ satisfies conditions (E),
and so witnesses AS([L,K]) = [L,K].

It remains to show that Φ satisfies conditions (E). Being identity on objects, Φ is
certainly surjective on objects, and it commutes with the Gets by its construction.
For condition (3), given an object S′ of SL,K , an object S of S such that ΦS = S′,
and an arrow α : GL(S) = FL(S′) // X ′ in X, we have PL(S, α) an arrow of S.
We need to show that ΦPL(S, α) = QL(S′, α). Since ΦS = S′ we have S = S′.
Now QL(S′, α) = QL(S, α) = (α, π0f(α, S)), for the forward propagation f of ML,K

constructed as in Lemma 15. By that construction π0f(α, S) = GK(PL(S, α)). But
ΦPL(S, α) = (GL(PL(S, α)), GK(PL(S, α))) = (α, π0f(α, S)) = QL(S′, α).

Thus, since AS([L,K]) = [L,K], AS is the identity.
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7 Related work

The present work owes its origins to the articles [2], [3] and [4] of Diskin and various co-
authors. Delta lenses based on categories in both asymmetric and symmetric versions
were first considered in those articles. We have somewhat simplified the description
of symmetric delta lenses (here called fb lenses) from the earlier work. Moreover we
have introduced an associative composition via the necessary equivalence relations to
ensure that we have a category of fb lenses.

In earlier work [11], we proved that asymmetric delta lenses compose (essentially
by composing the Gets and iterating the Puts). We also studied the category based
asymmetric lenses we had introduced and called c-lenses in [16]. In [11] we showed
that a c-lens is a special case of a d-lens, that the composition of c-lenses is as for
d-lenses, and finally that d-lenses are strictly more general than c-lenses.

As noted in Section 4, we also showed in [11] that an asymmetric delta lens is
an algebra for a certain semi-monad. This is similar to earlier results showing that
asymmetric set-based lenses are algebras for a monad [15] (as well as being coalgebras
for a comonad [6]), and so too are c-lenses [16], albeit for another monad.

This paper is a continuation of the project of unification begun in [12]. The goal
there was to make precise the relationship between spans of the set-based asymmetric
lenses of [5] and the set-based symmetric lenses of [8]. As in the current paper,
both sides of this relationship needed to be considered up to appropriate equivalence
relations. Hofmann et al [8] had already developed an equivalence relation among set-
based symmetric lenses. Their equivalence relation was defined (in part) operationally
using a bisimulation style.

The present authors have approached equivalence relations for lenses in an al-
gebraic, rather than an operational, manner. In the algebraic context there is no
requirement for an initialisation (the “missing” elements of [8] used to begin an “edit
session”). Lenses are algebraic structures up to algebraic equivalence. If two lenses
are algebraically equivalent (Definition 24), then choosing any two corresponding el-
ements as initial (“missing”) elements, the two lenses are operationally equivalent
meaning that any edit session carried out in the two lenses will have corresponding
outcomes. Of course the converse is not in general true — algebraic equivalence is
stronger than operational equivalence because, from an a priori choice of “missing”
elements, operational equivalence only depends upon reachable elements. Some of the
algebraic structure might be inequivalent, but unexplored. Our equivalence relation
on set-based symmetric lenses was based on the equivalence relation of Definition 3.2
in [8], and see also Theorem 3.9 of [9].

On the other side, we needed to define an equivalence relation among spans of
set-based asymmetric lenses. Our goal was to find the finest equivalence relation that
would support composition of spans, ensure that that composition is associative, and
identify lenses which are equivalent in their updating actions, although they might
differ in details hidden in the heads of their spans. Such an equivalence needed to
include, and be coarser than, span equivalence (an isomorphism between the heads
of the spans commuting with the legs of the spans). Furthermore, pre-composing the
legs of a span with a non-trivial set-based asymmetric lens gives a new span which
differs from the first only in the hidden details — the head would be different but the
updating actions at the extremities would be the same — so such pairs of spans should
also be equivalent. In [12] we were able to show that the equivalence generated by
such non-trivial set-based asymmetric lenses (commuting as lenses with the legs of the
spans) worked well, and that result was very satisfying because it demonstrated, as so
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much work in the theory of lenses does, that lenses and bidirectional transformations
more generally are valuable generalisations of isomorphisms.

The recent thesis of Wagner [23] includes an extensive discussion of work on delta
lenses as they relate to the edit lenses studied there and introduced earlier in [9].
As we recently showed in [14], there is a category of spans of asymmetric edit lenses
closely related to the category of edit lenses. (The asymmetric edit lenses are a new
concept introduced in the article.) This result furthers the unification project.

Edit lenses provide a compact representation of updates with common (often even
polymorphic) structure by taking updates from a monoid acting partially on the
states. It turns out that edit lenses are not more general than delta lenses. Indeed,
edit lenses can themselves be represented as symmetric delta lenses [14].

Other important work related to delta lenses has appeared in [22], [21], [19] and,
relating delta lenses to triple graph grammars, [7].

8 Conclusions

Because asymmetric delta lenses and symmetric delta lenses are so useful in applica-
tions, it is important that we understand them well and provide a firm mathematical
foundation. This paper provides such a foundation by formalizing fb-lenses and their
composition, including determining an appropriate equivalence relation on fb-lenses
as is required for the composition to be well-defined and associative. Furthermore
the resulting category fbDLens of fb-lenses is equivalent, indeed isomorphic, to the
category SpDLens whose arrows are equivalence classes of spans of d-lenses.

This last result, the isomorphism between fbDLens and SpDLens, furthers the
program to unify the treatment of symmetric lenses of type X as equivalence classes
of spans of asymmetric lenses of type X, carrying that program for the first time into
category-based lenses. (And that extension came with a surprise — see below.)

Naturally a unified treatment needs to be tested extensively on a wide range of
lens types, and more work remains. We consider two more cases in the forthcoming
[14]. The present paper is an important step in the program, and adds to the hope
that the unification is close at hand. Indeed, with this work the program encounters
the important category-based lenses for the first time and that substantially widens
the base of unified examples.

We end with a distilled example. It shows in a simplified way why the equivalence
used here, based on conditions (E), needs to be coarser than an equivalence generated
by lenses commuting with the spans though it remains compatible with the earlier
work. Thus it is also a coarser equivalence relation than might have been expected
based on [12].

The figure below presents two spans of d-lenses. The categories at the head and
feet of the spans have been shown explicitly. In three cases the category has a single
non-identify morphism called variously γ, δ and ε while in the fourth case the category
has two distinct nonidentity morphisms denoted α and β. In all cases objects and
identity morphisms have not been shown. In three cases there are just two objects,
while in the fourth case there are three, with a single object serving as the domain of
both α and β.
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The arrows displayed in both spans represent (the Gets of) d-lenses. In the lower
span the d-lenses are simply identity d-lenses (the Gets are isomorphisms sending ε
to γ in the left hand leg, and to δ in the right hand leg). Both of the Puts are then
determined. The upper span is made up of two non-identity d-lenses. In both cases
the Gets send both α and β to the one non-identity morphism (γ in the left hand leg
and δ in the right hand leg). We specify the Puts for the upper span (eliding reference
to objects in the Puts’ parameters since they can be easily deduced): PL(γ) = α and
PR(δ) = β for the left and right Puts respectively.

Notice that Φ, the functor that sends both α and β to ε, satisfies conditions (E)
showing, as expected, that the two spans are equivalent. After all, if one traces
through the forward and backward behaviours across the two spans the results at the
extremities are in all cases the same, though the intermediate results at the heads
of the spans differ. However, Φ cannot be the Get of a lens which commutes with
the other four d-lenses. Indeed, to commute with the left hand lenses would require
PΦ(ε) = α while to commute with the right hand lenses would require PΦ(ε) = β, but
α 6= β.

In fact, a similar example with sets in place of categories shows that the equivalence
relation between spans used in [12] (which is generated by well-behaved set-based
asymmetric lenses) is finer than might be desired. The authors have recently shown
how that paper can be modified to use an equivalence relation based on conditions
(E). Using that equivalence relation, the main result of [12] becomes an isomorphism
(as in this paper) rather than a retraction.
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