
Confidentiality in the Process of (Model-Driven) Software
Development

Michael Johnson

Departments of Mathematics and Computing

Macquarie University

Australia

Michael.Johnson@mq.edu.au

Perdita Stevens

School of Informatics

University of Edinburgh

Scotland

Perdita.Stevens@ed.ac.uk

ABSTRACT
Much is now understood about how to develop software that will

have good security properties in use. We claim that a topic which

needs more attention, in particular from the Bx community, is

security, especially confidentiality, in the software development

process itself. What is then at issue is not what particular users of

the software may be allowed to know, but rather, what particular

developers of the software may be allowed to know. How can soft-

ware development processes guarantee to respect confidentiality

without compromising effective development?

The question is of general interest across software engineer-

ing, but model-driven development (MDD) seems a particularly

promising arena in which to address it, because of MDD’s focus

on separation of concerns. In MDD, different people work with

separate models, where (ideally) each model records all and only

the information necessary to those who work with it. When nec-

essary, the models are reconciled by bidirectional transformations,

which automate a process which would otherwise have to be un-

dertaken manually by the groups of experts meeting and studying

both their models in order to bring them back into consistency. In

model-driven development confidentiality issues become particu-

larly clear and tractable, and bidirectional transformations have a

key technical role. We hope to encourage the community to take

up this challenge, and in this paper we begin our own analysis of a

selection of the issues, focusing particularly on developing a threat

model and some examples of secure restoration of consistency.

CCS CONCEPTS
•Mathematics of computing; • Security and privacy→ Social
aspects of security and privacy; • Software and its engineer-
ing → Software development process management;

KEYWORDS
Security,Model-driven software development, Confidentiality, Cospan

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00

https://doi.org/10.1145/3191697.3191714

ACM Reference Format:
Michael Johnson and Perdita Stevens. 2018. Confidentiality in the Pro-

cess of (Model-Driven) Software Development. In Proceedings of 2nd In-
ternational Conference on the Art, Science, and Engineering of Program-
ming (<Programming’18> Companion). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3191697.3191714

1 INTRODUCTION
Novel cyber-security breaches usually depend upon detailed un-

derstanding of the internal structure of the system being attacked.

Famously, Barnaby Jack [21] purchased outright two automatic

teller machines so that he could analyse the internal structure of

their code and ultimately develop what became known as “Jack-

potting” exploits. The Greek Vodafone breaches [22] depended

fundamentally upon esoteric understanding of the AXE program-

ming language and the code used in Ericsson R9.1 system software

for telecommunication switches. The development of novel and

extremely difficult-to-detect industrial robot exploits [23] depended

upon purchasing and reverse engineering multiple industrial robots.

There are of course many more examples.

Often the required structural information is obtained by reverse

engineering. Sometimes it comes from painstaking information

gathering over extended periods after a system has initially been

breached. And more and more frequently, especially in cases of

state-sponsored cyber attack, it comes from software engineers

who are familiar with the internal structure of the system through

their involvement in its development or maintenance.

Surprisingly, despite all this, there seems to have been remark-

ably little work by our security community on processes for preserv-

ing confidentiality during software development and maintenance.

Traditionally trust between developers, and between developers

and customers, has simply been regarded as a good thing; in ag-

ile methodologies, especially, it is regarded as crucial [20], and

supported by practices such as “customer on site” and “no code

ownership”. However, this sometimes results in conflating trust-

ing someone to do something (reliance) with trusting them with

information (transparency), concepts which we sometimes need to

separate.
1

An unwillingness to share information freely can indeed be a

“bad smell”, an indication that teamwork is failing and cultural is-

sues need to be addressed. On the other hand, there are times when

it is legitimately undesirable that everyone should have access to

every piece of information. The clearest examples arise where de-

velopment is being done collaboratively by different organisations,

which may naturally want to share only as much as is essential

1
See e.g. http://www.scaledagileframework.com/safe-core-values/.

1

https://doi.org/10.1145/3191697.3191714
https://doi.org/10.1145/3191697.3191714
http://www.scaledagileframework.com/safe-core-values/

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Johnson and Perdita Stevens

to the collaboration. Within a single organisation, some artefact,

such as a key algorithm that gives the organisation a competitive

advantage, should sometimes be available only to those with need-

to-know, in order to limit insider threat. Less obviously, there is a

case for limiting access, e.g. to specific implementations of inter-

faces, in order to avoid hidden dependencies on things that might

change later. It may not be easy to share the information that should

be shared for effective work, while still keeping other information

private; this depends, in part, on the development approach chosen.

Model-driven development (MDD) is an approach to software

development which prioritises separation of concerns. Decisions

about the software are taken by different groups of experts, work-

ing in separate models, where each model records the information

necessary to that group, and allows them to record their decisions.

When necessary, the models are reconciled by bidirectional trans-

formations, which automate a process which would otherwise have

to be undertaken manually by two groups of experts meeting and

studying both their models in order to bring them back into consis-

tency. In most settings where MDD has been used to date, there is

no pressing need to avoid users of one model having full knowledge

of someone else’s model; rather, the main motivations for automat-

ing the restoration of consistency are efficiency and reliability of the

development process. However, as MDD expands from the niches

where it was originally used, and especially as models are used

to articulate the connections between organisations with different

interests, situations are encountered where aspects of one model

may be confidential.

Our contributions are as follows.

(1) We draw together existing work on confidentiality in the

software development process (Section 2).

(2) We sketch a threat model applicable to collaborative MDD

(Section 3).

(3) We describe an approach to confidentiality in MDD which

we have found to be useful in practice (Section 4).

(4) We examine and distinguish two proposals for using bidi-

rectional transformations to enhance security and consider

their potential interactions (Section 5).

(5) We suggest a research agenda, hoping to stimulate the com-

munity to further work on this topic (Section 6).

2 RELATEDWORK
There is, of course, a considerable literature on security concerns

in model-driven development; see for example [10] for an early

overview of work including [1], which exploits bx towards devel-

oping systems with specified security properties. However, this

literature concerns, not the security of the process of development,

but the security properties of the system developed. The former is

our concern in this paper.

Where software development is undertaken within a single or-

ganisation, it is usually assumed that all developers are, or at least

should be if the organisation is healthy, fully trustworthy; the pos-

sibility that this may not be the case is a particular kind of insider
threat [3]. Despite a considerable amount of work on insider threat,

little of it pertains to the software development process, and that

little focuses on integrity. For example, it is recommended to re-

view commit logs to configuration management tools to detect the

insertion of malicious code, to require separate people to write and

review code (separation of duties – of course this practice has other

advantages) and to use reference monitors to detect insiders tam-

pering with deployed software [19, 24]. Organisational reporting

mechanisms also receive attention in the literature. It is recognised

that the risks increase when those with insider knowledge may be

outsiders, e.g. contractors (see [22] for discussion of a prominent ex-

ample) and legal measures such as NDAs may be used in an attempt

to reduce risk to confidentiality [25]. Nevertheless, when software

is developed in a single organisation, it is normal that all develop-

ers have unlimited read (at least) access to software development

artefacts. The perception is that it is important that all are trust-

worthy and trusted, and that departures from this are, and should

be regarded as, anomalous. Part of what drives this is the difficulty

in restricting access without impeding development. Typically soft-

ware architecture does not afford a clean separation between what

is confidential and what is not, and a potential hazard is that those

with access may not themselves understand the distinction clearly

and may give away confidential information without meaning to,

or conversely, may impede collaboration by over-caution.

Protection of data used within software development has re-

ceived more attention than protection of other artefacts. For ex-

ample, it is widely understood that good practice is to avoid using

production data during development and testing, or at least, to take

precautions such as masking it or reducing (subsetting) it. Even so,

this best practice is often not followed; for example, a 2009 report

[15] found “80% of respondents in the US and 77% in the UK report

that they use real production data as part of their application de-

velopment and testing process”, in the majority of cases without

masking or reducing, and with less stringent data protection proce-

dures in the development and test environment than the production

environment.

Trust receives more attention when it is more difficult to ob-

tain: in circumstances where individuals do not know one another

well. Let us consider in turn distributed software development, and
its extreme case global software development; interoperation be-

tween distinct organisations; open source developments; and crowd-

sourcing.

The literature on trust in distributed software developmentmostly

focuses on how to increase trust [8], because people (for reasons

that are sometimes considered good, sometimes bad) find it more

difficult to trust people in other places. Where development is dis-

tributed over different countries, this can be even more difficult. For

example, Jalali et al.[16] discuss trust in global software engineer-

ing. Their focus is on the human relationships involved: increasing

trust between developers situated in different countries is seen

as a way to ensure that they are willing to exchange information

freely about the details of their work. They highlight that trust has

both cognitive and affective elements. Affective trust is founded

on human relationships and is difficult to establish in a distributed

development environment; the paper discusses ways to do so.

It is once we move out of the realms of software developed by a

single organisation that authors become more willing to consider

that perhaps not all developers should be fully trusted. A strand

of research exemplified by Gallivan’s work [13] argues that the

human aspect of trust is dispensable in the presence of appropriate

2

Confidentiality in the Process of (Model-Driven) Software... <Programming’18> Companion, April 9–12, 2018, Nice, France

organisational controls. He concludes that open source software de-

velopment does not, in fact, furnish examples of widely distributed

trust, as is sometimes claimed. Rather, there is a core group of de-

velopers who trust one another, and rigid control mechanisms that

obviate the need for these developers to trust peripheral developers

or posters. This in turn is what enables trust in the software.

Dubey et al.[9] address the problem of confidentiality in crowd-

sourced software development. They are concerned with cases

where programming tasks are to be put in a marketplace, but their

most natural descriptions might give away confidential information

to the “gig economy” workers. They propose a natural language

processing based approach, where certain terms are identified as

potentially sensitive, task descriptions are automatically sanitised

before posting, and the resulting work desanitised before being

incorporated in the final software.

Intriguing though this approach is, what seems most remarkable

is that, as far as we have been able to discover, there is not more

work addressing technical aspects of confidentiality in software

development involving parties with possibly conflicting interests.

In particular, Dubey et al. highlight that we so far lack a threat

model, a gap we will address here.

The one interesting exception is a single paper by Foster, Pierce

and Zdancewic on “Updatable security views” [12]. In a setting of

asymmetric lenses, they propose what is in effect a type system

for part of the Boomerang language in which parts of the source

and view can be labelled with elements of a lattice representing

integrity or confidentiality levels. A source, containing informa-

tion to which confidentiality or integrity requirements pertain, is

related by a lens to a “security view” which may be updated by

an untrusted user. The lens is permitted by the type system only

if it preserves appropriate information-flow properties. A notable

issue is the interaction between integrity and confidentiality re-

quirements, partially addressed in this paper by dynamic analysis.

For example, the type system may ensure that an updated view is a

valid argument to a put function only if it agrees with the get of
the current source in certain respects, corresponding to source data

whose integrity must be preserved. However, forbidding the put
is information to the user of the view: for example, it may reveal

that there is a relationship between apparently innocuous data in

the view, and important hidden data in the source. This may be

important if the user of the view could not know it already. Here it
becomes important to think about the threat model. The paper [12]

assumes that only the user of the view is untrusted: the author of

the lens has full access to the source.

3 THREAT MODEL
Broadly, to develop a threat model relevant to the software devel-

opment process we need to:

(1) determine what setting we are assuming, i.e. the scope of

the threat model;

(2) identify (and, in a particular instance, rank) the potential
harms to guard against;

(3) make explicit assumptions about the capabilities and knowl-

edge of an adversary.

After this has been done it makes sense to consider security poli-

cies and mechanisms that can prevent the identified harms. Let us

consider these elements in turn.

3.1 Setting
Assume that two organisations, which we call A and B, need to co-

operate over the building and/or operation of some software. They

need to exchange information; but at least one of them possesses,

or expects to possess, information that should not be passed to the

other.

This covers a wide variety of set-ups. We will generally assume,

for interest, that the information the organisations need to exchange

is in some sense rich: it does not suffice for software built by A

to call functions in a fixed API maintained by B, for example. Our

paradigmatic example, from the field of model-driven development,

is that A owns a model m, B owns a model n, and these models

need to be kept consistent in an appropriate sense.

A and B might of course be different parts of the same organ-

isation: what matters is that it is not valid to assume that their

interests are perfectly aligned.

3.2 Potential Harms
It is important to note that the “information” whose confidentiality

and integrity we are concerned about, while including items that

might be traditionally thought of as “data” stored in the system, can

also include aspects of the way the system itself is structured, or the

way data is stored. Knowledge of such things can facilitate the devel-

opment of exploits, and in many proprietary systems which operate

“on-premises” (rather than being distributed to clients), those details

are often carefully guarded. Indeed, one of the motivations for this

paper is that in consultancy work that we have done, the tension

between the need to keep internal structures secret and the desire

to build software to facilitate interoperation has, when traditional

software engineering practices are used, threatened organisations’

willingness to continue with the project.

Let us elaborate this point by developing a list.

What might be confidential? Many different artefacts involved in

software development may, in whole or part, need to be regarded

as confidential. They might include:

• aspects of requirements, e.g., identities of commissioning

customers;

• metamodels, for example, of domain-specific modelling lan-

guages for defining families of products whose functionality

may be confidential;

• design models;

• software architecture;

• code;

• tests;

• configurations;

• model transformations;

• traceability information;
2

• data, of course.

We do not at present have full understanding of the threats

posed by leakage of information about these artefacts, severally

2
Thanks to the reviewer who pointed out that we had omitted this

3

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Johnson and Perdita Stevens

or in combination. We should also ask: what kind of information

in each artefact needs to be protected? This will affect the actions

that can be taken in response; for example, Dubey at al.’s work

[9] assumed that sanitisation, e.g. the replacement of a term by a

more general term, would suffice – when is this the case? They

point out that images might also need to be sanitised. However, in

some cases structural information, devoid of all linguistic content,

can still need to be held confidential. Unfortunately, it is difficult

to determine what structural information can be leaked without

compromising security. When dealing with outsiders, organisations

often err on the side of caution – for example, in our experience, it

can be difficult to get companies to agree to have their real design

models made public, even if all strings in them are deleted – but

the implications for distributed software development do not seem

to have been explored.

Reasons for confidentiality requirements. Having considered what
might be confidential, let us next consider why.

• Protection of intellectual property/trade secrets, such as [14]:

– the need to protect information that would genuinely

harm your organisation if it leaked, e.g., an algorithm that

gives you a competitive advantage, or any information

that might enable attacks on integrity or availability;

– the need to be seen to protect information in order to

maintain legal control over it, e.g., so as to patent it;

– protection of someone else’s IP, i.e. you have agreed to

protect something for someone else, perhaps as a condition

of using it.

• Protection of personal data, e.g., the content of a database

containing information about members of the public, or

(in certain organisations) information about employees and

their roles.

• Reputational risk, e.g., potential embarrassment at the release

of artefacts whose quality might be criticised.

• (Especially where A and B are different parts of the same

organisation.) Avoidance of conflict of interest, e.g., need to

maintain “Chinese walls” between information that should

not be shared in order to avoid insider trading.

A general observation is that even if there is, at corporate level,

a highly trusting relationship between organisations A and B, there

may still be strong confidentiality requirements on the software

artefacts. For example, an individual currently working at A or B

might subsequently move: their individual interests may not be

perfectly aligned with the organisation’s interests.

3.3 Adversary Model
Take the position of organisation A, in the case where A and B

cooperate to maintain consistency between modelsm and n. We

may want to consider adversaries with capabilities drawn from the

following:

(1) full knowledge of model n (read access to n)
(2) ability to change n (e.g. to probem)

(3) ability to cause consistency restoration to be done at will

(4) knowledge of the consistency restoration process, including

the definition of consistency

A B

m

::::::

::::::

n

::::::

::::::

Figure 1: Without automation, consistency restoration in-
volves full trust

(5) ability to change the consistency restoration process, includ-

ing the definition of consistency.

4 STEPS TOWARDS SECURE RESTORATION
OF CONSISTENCY

In this section we focus on a specific problem case. Two organi-

sations A and B need to cooperate, and this involves maintaining

a certain consistency relationship between two models,m and n.
How can they do it? We will assume that the adversary model

gives the attacker (at B from A’s point of view, and dually) all the

capabilities except the ability to change the consistency restora-

tion process: we will suggest designing that process so as to resist

releasing confidential information.

Initial situation. In the ideal, full trust, non-automated situa-

tion this would involve people from both A and B sitting down

periodically, looking atm and n side by side, and modifying one

or both to bring them back into consistency. (m and n might be

database schemas, UML models, user interaction models, bodies of

code...). This requires engineers from both A and B to be given full

knowledge of the contents of modelsm and n. (See Figure 1.)

Adding an automated (possibly bidirectional) transformation. Where

the process of restoring consistency needs to be automated, this

situation is formalised in the bidirectional transformation literature

by defining a consistency relation R ⊆ M × N , where M and N
are the sets of possible models, i.e.m ∈ M and n ∈ N . We often

use the simplifying assumption that each time consistency is re-

stored, one ofm, n (perhaps the one that has just been changed)

is authoritative and should not be changed automatically. (This

helps to avoid automated consistency simply undoing a change

that has been deliberatelymade by a developer.)We formalise this as

adding a pair of consistency restoration functions

−→
R : M ×N → N

and

←−
R : M × N → M satisfying certain laws to ensure sensible

round-trip behaviour. The problem, from the point of view of con-

fidentiality, is that each of these consistency restoration functions

needs to be given both models as arguments. This is essential in

the general case, because each model includes information which

is not present in the other.

4

Confidentiality in the Process of (Model-Driven) Software... <Programming’18> Companion, April 9–12, 2018, Nice, France

A B

Bxer

MMm

::::::

::::::

m

::::::

::::::

MMn

::::::

::::::

n

::::::

::::::

bx

::::::

::::::

Figure 2: Using a bidirectional transformation, consistency
restoration involves less trust

Now, if consistency restoration is done automatically by means

of such a transformation, we have the potential to avoid engineers

from A and B needing to look at one another’s models, which

is, arguably, an advance. Each of them can instead simply invoke

the consistency restoration function, and, instead of seeing the

other model, will observe only the effect on their own model of

consistency restoration with the other model.

Somebody, however, has to write the bidirectional transforma-

tion.
3
Typically, this development is done using examples of the

models, and with full access to the metamodels that define the

languages from which the models are drawn. Any debugging of

the transformation is normally done using the models that illus-

trate buggy behaviour. Thus, those responsible for the development

and maintenance of the bidirectional transformation still require

full access to bothm and n. To some extent this may be avoided:

even if access to full metamodels is required (and work on model

polymorphism may change this in future [6]), it is possible in prin-

ciple for the transformation to be developed and debugged using

hypothetical – minimised/sanitized/obfuscated – examples of the

models. There are obvious and severe disadvantages, such as the

effort required to construct such examples, especially where the

engineers who do have access to the full models may not deeply

understand the working of the transformation and may therefore

find this hard. There is scope for research in easing this process.

Now, even if we arrange that the developer of the bidirectional

transformation does not need access to both models, the transfor-

mation itself still does. (Figure 2.) Does this matter? It may: for

one thing, the transformation has to run somewhere, and using

today’s technologies, that means that some machine has to host

3
It might be objected – it was objected, by a reviewer – that machine learning, for

example, might obviate this necessity. We think the general point still stands: today,

even “unsupervised” learning requires, in practice, human access to the data over

which the learning takes place. Conceivably, in future, another level of abstraction

might indeed help, but we doubt this will affect the point any time soon.

A B

m

::::::

::::::

lm

::::::

::::::

n

::::::

::::::

ln

::::::

::::::

view

::::::

::::::

Figure 3: Using a common view, trust can be strictly limited

the transformation and hence information about both models. Ac-

cess to the machine has to be adequately controlled. For another

thing, the effect of the transformation on one model gives away

information about the content of the other. How much information

could a malicious engineer at B extract aboutm by using different

variants of n to “probe”m by repeatedly applying the consistency

restoration function and observing the effect on her variants of n?
In a particular setting, this could be tackled formally. If the consis-

tency restoration functions themselves are fixed, we expect to be

able to place limits on the deducible information: informally
4
, if

the transformation never looks at a particular, sensitive, part of a

model, then information from that part should not leak. If, however,

our malicious engineer is able to modify the bidirectional transfor-

mation too, and if this is written in terms of the whole metamodels,

and so in principle has access to the whole models, we should not

expect any useful confidentiality result. This is reminiscent of the

problems whose exploration led to the invention of differential

privacy for statistical queries over databases, following the under-

standing that no other known approach held much promise for

maintaining confidentiality of a database which could be freely

queried, even if queries were limited in, for example, the number

of tuples they would return or omit.

We have been discussing the symmetric case of a bidirectional

transformation, that in which each model contains information not

captured in the other, and therefore, in which consistency restora-

tion in either direction requires access to both models. Cases in

which one model includes all the information included in the other

– the second is a view onto a source – are somewhat simpler. They

can be captured by (asymmetric) lenses [11]. Then a get function
takes just a source and yields a view, while a put function takes

both a source and a view, and yields a modified source. Since the

get function does not require read access to the view model, this

might look like an advance, but by itself it does not help us. Putting

lenses with a common view together, however, does.

4
but there is some delicate (future) work to be done to make a correct, formal version

of the statement!

5

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Johnson and Perdita Stevens

Using a common view. In many – but not all – cases, a given

bidirectional transformation can be expressed using a pair of lenses

having a common view, as explained in [27]. Each ofm and n is

regarded as the source of its own lens, and consistency is defined

and restored via this pair of lenses. Informally,m and n are regarded

as consistent if, and only if, the views, via their respective lenses, are

identical; forward consistency restoration is done by forming the

view ofm via the get function of its lens, and then using this view

and n as arguments to the put function of the other lens in order to

generate a new version of n. Backward consistency restoration is

dual.

The practical importance of this procedure is that if the owners

ofm and n can agree on a common view which does not contain

information that either regards as confidential from the other, they

can use this to cooperate without needing to share more than is in

the view. Each can have their own developers build their own lens

connecting the common view to their own model, assuring that it

does not leak confidential information. (Figure 3.)

While not every bidirectional translation can be expressed in

this way – the paper [27] discusses the property of being simply-
matching which captures those set-based bidirectional transforma-

tions which can be, and in the Bx Example Repository, example

Wikipedia Translation [26] is a fairly realistic example of one that

cannot be – it seems from our industrial work that many bidirec-

tional transformations that arise in practice can be. The paper [17]

developed some necessary conditions for symmetric delta lenses to

be representable through a common view (and uncovered some of

the links with least change lenses). Most recently [18] characterises

those symmetric delta lenses which can be so represented.

Dubey et al.’s code-outsourcing with sanitisation [9] can be seen

as an example, and amusingly, so can the use of an insider threat

ontology [4].

5 SECURE RESTORATION OF CONSISTENCY
WHILE MAINTAINING CONFIDENTIALITY

It is interesting that despite the paucity of work on the applica-

tion of bidirectional transformations to the security of software

engineering practices, there are two quite different proposals – one

presented in Section 4 above and the other in reference [12] – for

using bidirectional transformations to enhance security. In this

section we compare and contrast the two of them. First we note

their differences, and then we speculate upon how they might work

together.

To begin we return to the updatable security views of Foster et

al [12], first mentioned at the end of Section 2. The work presented

there is intended to maintain the confidentiality and integrity of

identified data in the source of an asymmetric lens. It should be

noted that that work, at this stage, only deals with asymmetric

lenses. It is about preserving the confidentiality of information

stored in the source of the lens, and possibly permitting consistency

restoration while preserving the integrity of identified information

in the source. The development of such lenses depends, in the usual

framework of bidirectional programming, upon software engineers

having full knowledge of the models involved.

In contrast, the cospan approach presented in Section 4 concen-

trates on how to build a bx so as to preserve the confidentiality of

the models involved. It is intended for building symmetric lenses,

while ensuring that the details of the models at each end of the sym-

metric lens can remain confidential and only be accessed directly

by the organisation that owns them, along with that organisation’s

own software engineers. The flow of data between the organisa-

tions is strictly controlled with the only explicit transfers occurring

via the common view, and that view is the precisely stated material

that the organisations have agreed to share.

So, in summary, updatable security views identify, among the

data stored in a lens source, levels of data confidentiality and in-

tegrity, and then maintain those levels during operation, while the

cospan approach is a software engineering technique for developing

symmetric lens interoperations while preserving confidentiality.

Since the two techniques address substantially different security

aspects, one might be interested in whether they can work together

to achieve even better security outcomes.

In one direction, there appears to be little advantage. Although,

as noted above, the development of updatable security views de-

pends upon software engineers being given full access to all of the

models, there would be little to be gained by attempting to factor

that development process using cospans. Updatable security views

are asymmetric lenses. In the asymmetric case full access to models

is not a prime concern because the master-slave relationship of the

two components of an asymmetric lens implies that one organisa-

tion already controls all of the data, and that organisation will, in

general, trust its own software engineers.

On the other hand, there do appear to be advantages in con-

sidering using updatable security views as component lenses in a

cospan. Decomposing a proposed bidirectional transformation into

a cospan of lenses, each of which might protect its source’s data

confidentiality and integrity using techniques like those proposed

in [12] would, when the bidirectional transformation is a symmetric

lens, improve confidentiality in the development process (through

the cospan approach), and provide integrity and confidentiality

guarantees during interoperation (through the updatable security

views).

In our experience, when organisations have been able to agree

on the data on which to interoperate, there has been little concern

about confidentiality as long as the organisations can be assured,

via the common view interface, that only those data are revealed.

But there have been occasions where contractual obligations were

required to ensure that certain updates of the common data by one

party or the other are not allowed. This is for integrity reasons,

sometimes related to undesired effects of the Puts of the component

asymmetric lenses, usually because the Puts don’t meet least change

requirements, and it was part of the motivation for the half-duplex

interoperations developed in [5]. Using updatable security views

as the asymmetric lenses could provide an automatic enforcement

mechanism for the contractual obligations, and would provide a

natural integration of confidentiality and integrity mechanisms into

the development process, rather than having external contractual

agreements that need to be separately monitored.

6 RESEARCH ROADMAP
This paper seeks to stimulate work in software development and

maintenance processes that preserve confidentiality. Increasingly,

6

Confidentiality in the Process of (Model-Driven) Software... <Programming’18> Companion, April 9–12, 2018, Nice, France

systems interoperation occurs across organisational, hence trust,

boundaries. We have outlined how greater confidentiality can be

achieved using known MDD techniques in such a setting. Drawing

on both theoretical considerations and our industrial consultancy

experience, here is a non-exhaustive list of questions we think

should be addressed.

(1) We have noted from the applications that surprisingly often

a practical situation could indeed be represented as a cospan

of lenses with a common view. Why? In which domains?

(2) What formal support can be offered for the identification of

a common view and the development of lenses onto it, with

guarantees about information flow? (Note that the last is not

trivial, e.g. when the lenses are not very well-behaved [11]

dependencies between parts of a model can cause intuitively

surprising effects.)

(3) Can a formalisation making use of trajectory pairs as in the

organisational dimension of [7] give us any leverage, either

on confidentiality or on integrity?

(4) We have discussed bi-directional transformations, but some

interoperations involve more than two systems, and this is

now getting attention in MDD (e.g. there is an upcoming

Dagstuhl, Sem. 18491). What are the confidentiality implica-

tions?

(5) (When) can techniques like these be useful in the design and

development of software that traditionally would be thought

of as one unified, albeit structured, body of code? Are there

advantages to be obtained by building teams which maintain

confidentiality between themselves while working on one

project for one client, and whose code bases interact via

confidentiality preserving transformations?

(6) Foundational concerns are not the only important ones. Trust

is a complex matter [2] and changes to the software develop-

ment process can have unintended consequences. While we

hope that foundational work, by clarifying what is confiden-

tial, can enable greater affective trust [16] and more effective

development, that is a matter for empirical study.

7 CONCLUSIONS
The application of bidirectional transformations to enhance security

properties of software, and particularly of the software development

process, is promising, and as yet little developed.

In this paper we have identified confidentiality concerns that

arise within model-driven development, which should be addressed.

We have sketched a threat model. We have argued for the interface

(cospan) model as a pragmatic and often useful guard against some

of these threats. We have reviewed the only other application of

bidirectional transformations to security that we have been able to

find, and considered its possible application along with the cospan

model. And we have proposed new directions for foundational and

other research. In future, we plan to exploit the threat model more

fully, and to expand the discussion to better cover other security

concerns, such as integrity and authorisation, which in a bx setting

are interestingly related to confidentiality.

Security remains one of the major challenges for software engi-

neering. Modern software engineering is more and more concerned

with the management of interactions between systems. And model

driven software development, along with bidirectional transforma-

tions, promises improved separation of concerns in the software

engineering process, with significant opportunities for properly

controlling system interactions.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful comments, both for im-

proving this paper and for future work.

REFERENCES
[1] Howard Chivers and Richard F. Paige. 2009. XRound: A reversible template

language and its application in model-based security analysis. Information &
Software Technology 51, 5 (2009), 876–893. https://doi.org/10.1016/j.infsof.2008.

05.006

[2] Karen Clarke, Gillian Hardstone, and Mark Rouncefield (Eds.). 2006. Trust in
Technology: A Socio-Technical Perspective. Springer.

[3] Matthew Collins, Michael Theis, Randall Trzeciak, Jeremy Strozer, Jason Clark,

Daniel Costa, Tracy Cassidy, Michael Albrethsen, and Andrew Moore. 2016.

Common Sense Guide to Mitigating Insider Threats (fifth ed.). Technical Report

CMU/SEI-2016-TR-015. Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=484738

[4] Daniel Costa, Matthew Collins, Samuel J. Perl, Michael Albrethsen, George

Silowash, and Derrick Spooner. 2014. An Ontology for Insider Threat Indi-

cators: Development and Application. In STIDS (CEUR Workshop Proceedings),
Vol. 1304. CEUR-WS.org, 48–53.

[5] C.N.G Dampney and Michael Johnson. 2001. Half-duplex Interoperations for

Cooperating Information Systems. In Advances in Concurrent Engineering.
[6] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais, and Jean-

Marc Jézéquel. 2017. Safe model polymorphism for flexible modeling. Computer
Languages, Systems & Structures 49 (2017), 176–195. https://doi.org/10.1016/j.cl.
2016.09.001

[7] Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki. 2016. A

three-dimensional taxonomy for bidirectional model synchronization. Journal of
Systems and Software 111 (2016), 298–322. https://doi.org/10.1016/j.jss.2015.06.003

[8] Siva Dorairaj and James Noble. 2013. Agile Software Development with Dis-

tributed Teams: Agility, Distribution and Trust. In AGILE. IEEE Computer Society,

1–10.

[9] Alpana Dubey, Kumar Abhinav, and Gurdeep Virdi. 2017. A framework to pre-

serve confidentiality in crowdsourced software development. In ICSE (Companion
Volume). IEEE Computer Society, 115–117.

[10] Eduardo Fernández-Medina, Jan Jürjens, Juan Trujillo, and Sushil Jajodia. 2009.

Model-Driven Development for secure information systems. Information &
Software Technology 51, 5 (2009), 809–814. https://doi.org/10.1016/j.infsof.2008.

05.010

[11] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,

and Alan Schmitt. 2007. Combinators for bidirectional tree transformations: A

linguistic approach to the view-update problem. ACM Trans. Program. Lang. Syst.
29, 3 (2007), 17.

[12] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. 2009. Updatable

Security Views. In CSF. IEEE Computer Society, 60–74.

[13] Michael Gallivan. 2001. Striking a balance between trust and control in a virtual

organization: a content analysis of open source software case studies. Inf. Syst. J.
11, 4 (2001), 277–304. https://doi.org/10.1046/j.1365-2575.2001.00108.x

[14] Christopher George and Raymond Millien. 2015. Protecting IP in an agile

software development environment. IPWatchdog (December 2015). http://www.

ipwatchdog.com/2015/12/28/protecting-ip-agile-software-development/id=

64171/ Retrieved 17/11/17.

[15] Ponemon Institute. 2009. Data security in development and test-

ing. https://www.microfocus.com/media/report/ponemon-institute—data-

secur_tcm6-7227.pdf. (July 2009).

[16] Samireh Jalali, Çigdem Gencel, and Darja Smite. 2010. Trust dynamics in global

software engineering. In ESEM. ACM.

[17] Michael Johnson and Robert Rosebrugh. 2017. Universal Updates for Symmetric

Lenses. CEUR Proceedings 1827 (2017), 39–53.
[18] Michael Johnson and Robert Rosebrugh. 2018. Cospans and Symmetric Lenses.

(2018). In this volume.

[19] Richard Kissel, Kevin Stine, Matthew Scholl, Hart Rossman, Jim Fahlsing, and

Jessica Gulick. 2008. Security Considerations in the System Development Life
Cycle. Technical Report Special Publication 800-64 Revision 2. NIST. https:

//csrc.nist.gov/publications/detail/sp/800-64/rev-2/final

[20] Orla McHugh, Kieran Conboy, and Michael Lang. 2012. Agile Practices: The

Impact on Trust in Software Project Teams. IEEE Software 29, 3 (2012), 71–76.

7

https://doi.org/10.1016/j.infsof.2008.05.006
https://doi.org/10.1016/j.infsof.2008.05.006
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=484738
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=484738
https://doi.org/10.1016/j.cl.2016.09.001
https://doi.org/10.1016/j.cl.2016.09.001
https://doi.org/10.1016/j.jss.2015.06.003
https://doi.org/10.1016/j.infsof.2008.05.010
https://doi.org/10.1016/j.infsof.2008.05.010
https://doi.org/10.1046/j.1365-2575.2001.00108.x
http://www.ipwatchdog.com/2015/12/28/protecting-ip-agile-software-development/id=64171/
http://www.ipwatchdog.com/2015/12/28/protecting-ip-agile-software-development/id=64171/
http://www.ipwatchdog.com/2015/12/28/protecting-ip-agile-software-development/id=64171/
https://csrc.nist.gov/publications/detail/sp/800-64/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-64/rev-2/final

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Johnson and Perdita Stevens

[21] Robert McMillan. 2010. Barnaby Jack hits ATM jackpot at Black Hatx.

ComputerWorld (July 2010). https://www.computerworld.com/article/2519671/

computer-hardware/barnaby-jack-hits-atm-jackpot-at-black-hat.html

[22] Vassilis Prevelakis and Diomidis Spinellis. 2007. The Athens Affair. IEEE Spectrum
(June 2007).

[23] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria

Zanchettin, and Stefano Zanero. 2017. An Experimental Security Analysis of an

Industrial Robot Controller. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 268–286.

[24] Ron Ross, Michael McEvilley, and Janet Carrier Oren. 2016. Systems security
engineering. Technical Report Special Publication 800-160. NIST. https://csrc.nist.

gov/publications/detail/sp/800-160/final

[25] Bret J. Stancil. [n. d.]. What To Look Out For In Software Development NDAs.

https://www.toptal.com/it/what-to-look-out-for-in-software-developer-ndas. ([n.

d.]). Retrieved 17/11/17.

[26] Perdita Stevens. [n. d.]. Wikipedia Translation v0.1 in Bx Examples Repository.

http://bx-community.wikidot.com/examples:home. ([n. d.]). Date retrieved:

26/2/18.

[27] Perdita Stevens. 2012. Observations relating to the equivalences induced on

model sets by bidirectional transformations. EC-EASST 049 (2012).

8

https://www.computerworld.com/article/2519671/computer-hardware/barnaby-jack-hits-atm-jackpot-at-black-hat.html
https://www.computerworld.com/article/2519671/computer-hardware/barnaby-jack-hits-atm-jackpot-at-black-hat.html
https://csrc.nist.gov/publications/detail/sp/800-160/final
https://csrc.nist.gov/publications/detail/sp/800-160/final
http://bx-community.wikidot.com/examples:home

	Abstract
	1 Introduction
	2 Related work
	3 Threat model
	3.1 Setting
	3.2 Potential Harms
	3.3 Adversary Model

	4 Steps towards secure restoration of consistency
	5 Secure restoration of consistency while maintaining confidentiality
	6 Research roadmap
	7 Conclusions
	Acknowledgments
	References

